Monaadid ja
korvalefektid

Danel Ahman

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid

* sisend-valjund

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)

b

Il TARTU ULIKOOL

nmm
1632

Funktsioonid ldrises

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)

* erandid (ingl exceptions) ja nende tootlemine

b

Il TARTU ULIKOOL

nmm
1632

Funktsioonid ldrises

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
* erandid (ingl exceptions) ja nende tootlemine

* malu kasutus

b

Il TARTU ULIKOOL

nmm
1632

Funktsioonid ldrises

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
* erandid (ingl exceptions) ja nende tootlemine
* malu kasutus

* muudetavad (ingl mutable) muutujad

b

Il TARTU ULIKOOL

nmm
1632

Funktsioonid ldrises

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
* erandid (ingl exceptions) ja nende tootlemine
* malu kasutus
* muudetavad (ingl mutable) muutujad

* mittedeterminism

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
* erandid (ingl exceptions) ja nende tootlemine
* malu kasutus
* muudetavad (ingl mutable) muutujad

* mittedeterminism

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
* erandid (ingl exceptions) ja nende tootlemine
* malu kasutus
* muudetavad (ingl mutable) muutujad

* mittedeterminism

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
* malu kasutus
* muudetavad (ingl mutable) muutujad

* mittedeterminism

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
e malu kasutus (f : Nat -> ?77?)
* muudetavad (ingl mutable) muutujad

* mittedeterminism

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
e malu kasutus (f : Nat -> ?77?)
e muudetavad (ingl mutable) muutujad (f : Nat -> ?77)

* mittedeterminism

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
e malu kasutus (f : Nat -> ?77?)
e muudetavad (ingl mutable) muutujad (f : Nat -> ?77)

* mittedeterminism (f : Nat -> ?77)

toenaosuslikud arvutused

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
e malu kasutus (f : Nat -> ?77?)
e muudetavad (ingl mutable) muutujad (f : Nat -> ?77)

* mittedeterminism (f : Nat -> ?77)

téendosuslikud arvutused (f : Nat -> ??77)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)

e malu kasutus (f : Nat -> ?77?)

muudetavad (ingl mutable) muutujad (f : Nat -> ?77?) monaadid

mittedeterminism (f : Nat -> ?77)

téendosuslikud arvutused (f : Nat -> ??77)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Funktsioonid ldrises

L1

* Vaikimisi on ldrise funktsioonid puhtad, ilma korvalefektideta, matemaatilised
«f : Nat -> Bool

e Samas on paris programmides aga tihti kasulikud ka kérvalefektid
e sisend-valjund (f : Nat -> IO Bool)
« erandid (ingl exceptions) ja nende tootlemine (f : Nat -> ??7?)
e malu kasutus (f : Nat -> ??77) monaadid
e muudetavad (ingl mutable) muutujad (f : Nat -> ?77)

* mittedeterminism (f : Nat -> ?77)

téendosuslikud arvutused (f : Nat -> ??77)

b

il TARTU ULIKOOL

nmm
1632

Naide |: Aritmeetiliste avaldiste vaartustamine

TARTU ULIKOOL

_
—_—
5\ m—
—_
1=

=

Naide |: Aritmeetiliste avaldiste vaartustamine

L1

 Aritmeetilised avaldised

infix1l 10 :+:, :—:

infixl 11 :s:

data Expr = Num Int
| (:+:) Expr Expr
| (:=:) Expr Expr
| (:x:) Expr Expr

Naide |: Aritmeetiliste avaldiste vaartustamine

b

il TARTU ULIKOOL

nmm
1632

 Aritmeetilised avaldised

infix1l 10 :+:, :—:
infixl 11 :x%:

data Expr = Num Int
| (:+:) Expr Expr
| (:=:) Expr Expr
| (:x:) Expr Expr
* Naited
expl : Expr

expl = Num 1 :+: Num 2

exp2 : Expr
Num 2 :x: (Num 4 :-:

Q)
X
©
N
I

Num 1)

b

il TARTU ULIKOOL

nmm
1632

Naide |: Aritmeetiliste avaldiste vaartustamine

TARTU ULIKOOL

_
—_—
5\ m—
—_
1=

=

Naide |: Aritmeetiliste avaldiste vaartustamine

L1

* Aritmeetiliste avaldiste vaartustamine
eval : Expr —> Int
eval (Num i) =i

eval el + eval e2

eval el - eval e2
eval el x eval e2

eval (el :+: e2)
eval (el :—: e2)
eval (el :x: e2)

b

il TARTU ULIKOOL

nmm
1632

Naide |: Aritmeetiliste avaldiste vaartustamine

* Aritmeetiliste avaldiste vaartustamine
eval : Expr —> Int
eval (Num i) =i

eval el + eval e2

eval el - eval e2
eval el x eval e2

eval (el :+: e2)
eval (el :—: e2)
eval (el :x: e2)

* Naited

expl : Expr
expl = Num 1 :4+: Num 2

=)

Naide |: Aritmeetiliste avaldiste vaartustamine TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine
eval : Expr —> Int
eval (Num i) =i

eval el + eval e2

eval el - eval e2
eval el x eval e2

eval (el :+: e2)
eval (el :—: e2)
eval (el :x: e2)

* Valjund * Naited

Loengl5a> eval expl expl : Expr
3 expl = Num 1 :4+: Num 2

Naide |: Aritmeetiliste avaldiste vaartustamine [l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine
eval : Expr —> Int
eval (Num i) =1
eval (el :+: e2) = eval el + eval e2
eval (el :—: e2) = eval el - eval e2
eval (el :*: e2) = eval el x eval e2
* Valjund * Naited
Loengl5a> eval expl expl : Expr
3 expl = Num 1 :4+: Num 2
exp2 : Expr
exp2 = Num 2 :x: (Num 4 :—=: Num 1)

Naide |: Aritmeetiliste avaldiste vaartustamine Il TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine

eval : Expr —> Int

eval (Num i) = i

eval (el :+: e2) = eval el + eval e2

eval (el :—: e2) = eval el - eval e2

eval (el :*: e2) = eval el x eval e2
* Valjund * Naited

Loengl5a> eval expl expl : Expr

3 expl = Num 1 :4+: Num 2

Loengl5a> eval exp2 exp2 : Expr

6 exp2 = Num 2 :x: (Num 4 :—=: Num 1)

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Naide 2: Avaldiste vaartustamine (koos jagamisega)

L1

b

il TARTU ULIKOOL

1632

Naide 2: Avaldiste vaartustamine (koos jagamisega)

* Aritmeetilised avaldised (koos jagamisega)

infix1l 10 :+:, :—:
infixl 11 :x:, :/:

data Expr = Num Int

(:+:) Expr Expr
(:=:) Expr Expr
(:%:) Expr Expr
(:/:) Expr Expr

b

il TARTU ULIKOOL

nmm
1632

Naide 2: Avaldiste vaartustamine (koos jagamisega)

* Aritmeetilised avaldised (koos jagamisega)

infix1l 10 :+:, :—:
infixl 11 :x:, :/:

data Expr = Num Int
(:4:) Expr Expr

(:=:) Expr Expr
(:%:) Expr Expr
(:/:) Expr Expr
* Naited
expl : Expr

expl = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :x: (Num 4 :-=: Num 1)

b

Naide 2: Avaldiste vaartustamine (koos jagamisega) @l TARTU ULIKOOL
* Aritmeetilised avaldised (koos jagamisega)
infixl 10 :+:, :-—
infixl 11 :x:, :/:
data Expr = Num Int
(:4:) Expr Expr
(:=:) Expr Expr
(:%:) Expr Expr
(:/:) Expr Expr
* Naited
expl : Expr exp3 : Expr
expl = Num 1 :+: Num 2 exp3 = Num 4 :*x: Num 3 :/: Num 2
exp2 : Expr expd : Expr
exp2 = Num 2 :x: (Num 4 :—: Num 1) exp4 = Num 4 :x: Num 3 :/: (Num 2 :—: Num 2)

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Naide 2: Avaldiste vaartustamine (koos jagamisega)

L1

b

Il TARTU ULIKOOL

nmm
1632

Naide 2: Avaldiste vaartustamine (koos jagamisega)

* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)
evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2
evall (el :-: e2) = evall el - evall e2
evall (el :x: e2) = evall el x evall e2
evall (el :/: e2) = evall el ‘div evall e2

b

Il TARTU ULIKOOL

nmm
1632

Naide 2: Avaldiste vaartustamine (koos jagamisega)

* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)
evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2
evall (el :—: e2) = evall el - evall e2
evall (el :x: e2) = evall el x evall e2
evall (el :/: e2) = evall el div evall e2
* Naited
exp3 : Expr

exp3 = Num 4 :ix: Num 3 :/: Num 2

=)

Naide 2: Avaldiste vaartustamine (koos jagamisega) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)
evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2
evall (el :—: e2) = evall el - evall e2
evall (el :x: e2) = evall el *x evall e2
evall (el :/: e2) = evall el ‘div evall e2
* Valjund * Naited
Loengl5b> evall exp3 exp3 : Expr

6 exp3 = Num 4 :*: Num 3 :/: Num 2

Naide 2: Avaldiste vaartustamine (koos jagamisega) @l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)

evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2

evall (el :-: e2) = evall el - evall e2

evall (el :x: e2) = evall el x evall e2

evall (el :/: e2) = evall el "div evall e2
* Valjund * Naited

Loengl5b> evall exp3 exp3 : Expr

6 exp3 = Num 4 :ix: Num 3 :/: Num 2

expd4d : Expr
exp4 = Num 4 :x: Num 3 :/: (Num 2 :—: Num 2)

Naide 2: Avaldiste vaartustamine (koos jagamisega) @l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)

evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2

evall (el :-: e2) = evall el - evall e2

evall (el :x: e2) = evall el x evall e2

evall (el :/: e2) = evall el "div evall e2
* Valjund * Naited

Loengl5b> evall exp3 exp3 : Expr

6 exp3 = Num 4 :*: Num 3 :/: Num 2

Loengl5b> evall exp4d expd4 : Expr

let False = True in exp4 = Num 4 :k: Num 3 :/: (Num 2 :-: Num 2)

prim__div_Int 12 @

Naide 2: Avaldiste vaartustamine (koos jagamisega) @l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)

evall : Expr —> Int

evall (Num i) = 1

evall (el :+: e2) = evall el + evall e2

evall (el :-: e2) = evall el - evall e2

evall (el :x: e2) = evall el x evall e2

evall (el :/: e2) = evall § . . o N

Viga, mida ei saa edasi toodelda!
* Valjund
_ J

Loengl5b> evall exp3 exp3 : EXpr

6 exp3 = Num 4 :ix: Num 3 :/: Num 2

Loengl5b> evall exp exp4 : Expr

let False = True in exp4 = Num 4 :x: Num 3 :/: (Num 2 :-=: Num 2)

prim__div_Int 12 @

Naide 2: Avaldiste vaartustamine (koos jagamisega) @l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (koos jagamisega)
evall : Expr —> Int
//Integral Integer where A
evall (Num i) = 1 div x y
= case y == 0 of
evall (el :+: e2) = evall el + ev False => prim__div_Integer x y
evall (el :-: e2) = evall el - ey)
evall (el :x: e2) = evall el x eJéxl cz
evall (el :/: e2) = evall § . . o N
Viga, mida ei saa edasi toodelda!
* Valjund
_ /
Loengl5b> evall exp3 exp3 : EXpr
6 exp3 = Num 4 :ix: Num 3 :/: Num 2
Loengl5b> evall exp exp4 : Expr
let False = True in exp4 = Num 4 ki Num 3 :/: (Num 2 :—: Num 2)

prim__div_Int 12 @

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Naide 3: Avaldiste vaartustamine (koos eranditega)

L1

b

X

il TARTU ULIKOOL

nmm
1632

Naide 3: Avaldiste vaartustamine (koos eranditega)

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

b

X

il TARTU ULIKOOL

nmm
1632

Naide 3: Avaldiste vaartustamine (koos eranditega)

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Naide 3: Avaldiste vaartustamine (koos eranditega)

L1

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

eval2 : Expr —> Option Int

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Naide 3: Avaldiste vaartustamine (koos eranditega)

L1

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

eval2 : Expr —> Option Int

eval2 (Num i) = Some i

Naide 3: Avaldiste vaartustamine (koos eranditega)

=)

=
=
ey =pa—
O —
=

L1

TARTU ULIKOOL

* Osaliste vaartuste andmetuup

data Option a = None

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

eval2 :

eval2

eval2

eval2
eval2
eval2

| Some a

Expr —> Option Int

(Num 1) = Some i

(el :+:

(el :-:
(el :x:
(el :/:

e2)

e2)
e2)
e2)

case eval2 el of

None
Some vl

=> None

=> case eval2 e2 of

None
Some v2

=> None
=> Some (vl + v2)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Naide 3: Avaldiste vaartustamine (koos eranditega)

L1

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

eval2 : Expr —> Option Int

=)

Naide 3: Avaldiste vaartustamine (koos eranditega) TARTU ULIKOOL

=
=
& o
T —
=

L1

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None
| Some a

* Aritmeetiliste avaldiste vaartustamine (koos jagamise ja eranditega)

eval2 : Expr —> Option Int

eval2 (el :/: e2) =
case eval2 el of

None => None

Some vl => case eval2 e2 of
None => None
Some v2 => if v2 ==

then None
else Some (vl “div" v2)

b

il TARTU ULIKOOL

nmm
1632

Naide 3: Avaldiste vaartustamine (koos eranditega)

* Osaliste vaartuste andmetuup (isomorfne Maybe andmetuubiga standardteegis)

data Option a = None e ~
| Some a
exp3 : Expr
: - , v oo exp3 = Num 4 :x: Num 3 :/: Num 2
* Aritmeetiliste avaldiste vaartust
Loeng1l5b> eval2 exp3
eval2 : Expr —> Option Int Some 6
expd : Expr
eval2 (el :/: e2) = exp4 = Num 4 :x: Num 3 :/: (Num 2 :—: Num 2)
case eval2 el of
None => None Loengl5b> eval2 exp4
Some vl => case eval2 e2 o] None
None => No)
Some v2 => if vz ==
then None

else Some (vl “div" v2)

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Palju koodi duplitseerimist

L1

il TARTU ULIKOOL

nmm
32

b

I

Palju koodi duplitseerimist

* llma eranditeta vaartustaja

evall : Expr —> Int

evall (Num i) = i

evall (el :+: e2) = evall el + evall e2
evall (el :—: e2) = evall el - evall e2
evall (el :x: e2) = evall el % evall e2
evall (el :/: e2) = evall el ‘div’ evall e2

b

TARTU ULIKOOL

ey =pa—
O —
1

Palju koodi duplitseerimist

° o o0 . ° Pares .
* llma eranditeta vaartustaja * Eranditega vaartustaja
evall : Expr —> Int eval2 : Expr —> Option Int
evall (Num i) = i eval2 (Num i) = Some i
evall (el :+: e2) = evall el + evall e2 eval2 (el :+: e2) =
evall (el :—: e2) = evall el - evall e2 case eval2 el of
evall (el :x: e2) = evall el % evall e2 None => None
evall (el :/: e2) = evall el "div evall e2 Some v1 => case eval2 e2 of
None => None
Some v2 => Some (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl - v2)
eval2 (el :%: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

TARTU ULIKOOL

ey =pa—
O —
1

Samas palju sarnaseid korduvaid mustreid

* Eranditega vaartustaja

eval2 : Expr —> Option Int
eval2 (Num i) = Some i

eval2 (el :+: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None
Some v2 => Some (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl - v2)
eval2 (el :%: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

TARTU ULIKOOL

ey =pa—
O —
1

Samas palju sarnaseid korduvaid mustreid

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int
eval2 (Num i) = Some i

eval2 (el :+: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None
Some v2 => Some (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl - v2)
eval2 (el :%: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

Il TARTU ULIKOOL

nmm
1632

Samas palju sarnaseid korduvaid mustreid

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita .2 own 1) = sone 1

eval2 (el :+: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None
Some v2 => Some (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of

None => None
Some v2 => Some (vl - v2)
eval2 (el :x: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

Il TARTU ULIKOOL

nmm
1632

Samas palju sarnaseid korduvaid mustreid

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (wn 1) = sone 1

eval2 (el :+: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None
Some v2 => Some (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of

None => None
Some v2 => Some (vl - v2)
eval2 (el :x: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

Il TARTU ULIKOOL

.
16:

Samas palju sarnaseid korduvaid mustreid

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (un 1) = sone s

eval2 (el :+: e2) =
case eval2 el of

* alamavaldiste vaartustamine Non=s T None g
° 00 ¢ ° None => None
toimub jarjestikku Some v2 = Sone (V1 + v2)
eval2 (el :—: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl - v2)
eval2 (el :*: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

Samas palju sarnaseid korduvaid mustreid [l TARTU ULIKOOL

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (wn 1) = sone 1

eval2 (el :+: e2) =
case eval2 el of

* alamavaldiste vaartustamine None =>Mone .
° 00 ¢ ° None => None
toimub jarjestikku Sone v2 = Sone (v1 + v2)
eval2 (el :-: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (vl - v2)
eval2 (el :*: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

Samas palju sarnaseid korduvaid mustreid fll TARTU ULIKOOL

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (un 1) = sone s

eval2 (el :+: e2) =
case eval2 el of

* alamavaldiste vaartustamine LD
toimub jirjestikku Sone v2 = Some (v1 + v2)
eval2 (el :-: e2) =
case eval2 el of
v e ~ .. ~ None => None
* kui uks ebaonnestub, siis ebadnnestub some vi = case evatz ez ot
kogu avaldise vaartustamine cvals (1 iwi ag) oTE V2= sone (V1= wv2)
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

b

Il TARTU ULIKOOL

.
16:

Samas palju sarnaseid korduvaid mustreid

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (wn 1) = sone 1

eval2 (el :+: e2) =
case eval2 el of

* alamavaldiste vaartustamine None = None
toimub jirjestikku Some v2 = Sone (v + v2)
eval2 (el :-: e2) =
case eval2 el of
v e ~ .. ~ None => None
* kui uks ebaonnestub, siis ebadnnestub some v1 > case evatz e2 of
kogu avaldise vaartustamine cvals (1 iwi ag) omE V2 = some (V1= w2)
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 => Some (v1 % v2)
eval2 (el :/: e2) =
case eval2 el of

None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

Samas palju sarnaseid korduvaid mustreid fll TARTU ULIKOOL

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (un 1) = sone s

eval2 (el :+: e2) =
case eval2 el of

e alamavaldiste vaartustamine e => None
ome vl => case eval2 e2 of
tOImUb ’arjeStlkku gg;: v2 :z 28:1: (vl + v2)
eval2 (el :-: e2) =
case eval2 el of
. oo ~ .o ~ None => None
e kui uks ebaonnestub, siis ebadnnestub some vi = case eval €2 of
kogu avaldise vaartustamine a2 (o1 i o SR S - @
case eval2 el of
None => None
~ . Some vl => case eval2 e2 of
e onnestumise korral antakse tulemus None => None
. ooe Some v2 => Some (vl * v2)
edasi jargnevale arvutusele eval2 (el :/: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div' v2)

Samas palju sarnaseid korduvaid mustreid fll TARTU ULIKOOL

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (wn 1) = sone 1

eval2 (el :+: e2) =
case eval2 el of

e alamavaldiste vaartustamine None -+ => None
ome vl => case eval2 e2 of
toimub jarjestikku tone v2 = Sone (v1 % v2)
eval2 (el :-: e2) =
case eval2 el of
. oo ~ .o ~ None => None
e kui uks ebaonnestub, siis ebadnnestub some vi = case eval2 e2 of
kogu avaldise vaartustamine cvals (el sxs ag) oME V2 = Some (V1 - v2)
case eval2 el of
None => None
~ . Some vl => case eval2 e2 of
e onnestumise korral antakse tulemus None => None
. ooe Some v2 => Some (vl % v2)
edasi jargnevale arvutusele eval2 (el :/: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
None => None

Some v2 =>
if v2 == 0 then None else Some (vl ‘div’ v2)

Samas palju sarnaseid korduvaid mustreid fll TARTU ULIKOOL

* Korduvad mustrid: * Eranditega vaartustaja

eval2 : Expr —> Option Int

* vaartuse tagastamine ilma erandita a2 (un 1) = sone s

eval2 (el :+: e2) =
case eval2 el of

* alamavaldiste vaartustamine None -+ => None
ome vl => case eval2 e2 of
toimub jarjestikku tone v2 = Sone (v1 % v2)
eval2 (el :-: e2) =
case eval2 el of
. oo ~ .o ~ None => None
e kui uks ebaonnestub, siis ebadnnestub some vi = case eval? €2 of
kogu avaldise vaartustamine cvals (el sxs ag) oME V2 = Some (V1 - v2)
case eval2 el of
None => None
~ . Some vl => case eval2 e2 of
e onnestumise korral antakse tulemus None => None
. ooe Some v2 => Some (vl % v2)
edasi jargnevale arvutusele eval2 (el :/: e2) =
case eval2 el of
None => None
Some vl => case eval2 e2 of
o ° ~ ° None => None
* vajadusel erandi tostatamine Some v2 =

if v2 == 0 then None else Some (vl ‘div’ v2)

b

X

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid abstraktsemalt

b

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid abstraktsemalt

e Vaartuse tagastamine ilma erandit tostatamata

oReturn : a —> Option a
oReturn x = Some Xx

=)

Korduvad mustrid abstraktsemalt TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

e Vaartuse tagastamine ilma erandit tostatamata

oReturn : a —> Option a
oReturn x = Some Xx

* Eranditega arvutuste jarjestikku jooksutamine
oBind : Option a —> (a —> Option b) —> Option b
oBind comp f = case comp of

None => None
Some X => T X

=)

Korduvad mustrid abstraktsemalt TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

e Vaartuse tagastamine ilma erandit tostatamata

oReturn : a —> Option a
oReturn x = Some Xx

* Eranditega arvutuste jarjestikku jooksutamine
oBind : Option a —> (a —> Option b) —> Option b
oBind comp f = case comp of

None => None
Some X => T X

* Vajadusel erandi téstatamine

oThrow : Option a
oThrow = None

Naide 3: Avaldiste vaartustamine (abstraktsemalt)

b

nmm
1632

X

il TARTU ULIKOOL

oBind :

oReturn :

oThrow :

a —> Option a

~

Option a -> (a —> Option b) —> Option b

Option a

J

)

Naide 3: Avaldiste vaartustamine (abstraktsemalt) [l TARTU ULIKOOL
eval3 : Expr —> Option Int (oReturn a —-> Option a)

oBind : Option a —> (a —> Option b) —> Option b
evald (Num 1) = DS 1 QThrow : Option a J

eval3 (el :+: e2) = eval3 el oBind \ v1 =>
eval3 e2 oBind \ v2 =>
oReturn (vl + v2)

eval3 (el :-: e2) eval3 el oBind \ vl =>
eval3 e2 oBind \ v2 =>

oReturn (vl - v2)

eval3 el oBind \ vl =>
eval3 e2 "oBind \ v2 =>
oReturn (vl x v2)

eval3 (el :x: e2)

eval3 (el :/: e2) eval3 el "oBind \ v1 =>
eval3 e2 oBind \ v2 =>

if v2 == 0 then oThrow else oReturn (vl “div’ v2)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Option tuup on monaad!

L1

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Option tuup on monaad!

L1

* Option tiilip kirjeldab potentsiaalselt erandeid tostatavaid arvutusi
* kus saab ilma erandita vaartusi tagastada (oReturn)
* mida saab jarjestikku kaivitada (oBind)

* kus saab vajadusel erandit tostatada (oThrow)

b

Il TARTU ULIKOOL

nmm
1632

Option tuup on monaad!

* Option tiilip kirjeldab potentsiaalselt erandeid tostatavaid arvutusi
* kus saab ilma erandita vaartusi tagastada (oReturn)
* mida saab jarjestikku kaivitada (oBind)
* kus saab vajadusel erandit tostatada (oThrow)
* Monaadid kirjeldavad uldisemalt arvutusi
* kus saab vaartusi tagastada (return)
* mida saab jarjestikku kaivitada (bind)

* kus voib saada kaivitada spetsiifilisi operatsioone

b

X

Il TARTU ULIKOOL

nmm
1632

Monaadid

b

il TARTU ULIKOOL

Monaadid e

* Monaadid uldiselt (Idrise tuubiklassina)

interface Monaad (@ m : Type —> Type) where

return : a —> m a

bind :ma->(a->mb) ->mb (>>= ja do-notatsioonid)

b

Monaadid

Il TARTU ULIKOOL
* Monaadid uldiselt (Idrise tuubiklassina)
interface Monaad (@ m : Type —> Type) where
return : a -=> m a
bind :ma—->(a->mb) ->mb (>>= ja do-notatsioonid)

+ vorduslikud seadused returni ja bindi kohta (mida FP keeltes tihti ei kontrollita)
e (return x) >>= f ~ f x
e c >= (\ X => return x) = <

e (c >= f) >>=¢ = ¢ >>= (\ x => (f x) >>= g)

Monaadid fll TARTU ULIKOOL
* Monaadid uldiselt (Idrise tuubiklassina)
interface Monaad (@ m : Type —> Type) where
return : a -=> m a
bind :ma->(a->mb) ->mb (>>= ja do-notatsioonid)

+ vorduslikud seadused returni ja bindi kohta (mida FP keeltes tihti ei kontrollita)

e (return x) >>= f =~ T X
e c >= (\ X => return x) = ¢
e (c >= f) >>=¢ = ¢ >>= (\ x => (f x) >>= g)

* Option monaad eranditega programmeerimiseks

Monaad Option where
return = oReturn
bind = oBind

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Monaadid ldrises

Monaadid ldrises

=)

=
=
ey =pa—
O —
=

L1

TARTU ULIKOOL

* |drises on ka sisseehitatud monaadide tutibiklass

interface Functor f where
map : (@ > b) > fa —>"fb

interface Functor f => Applicative f where
pure : a —> f a
(<x>) : f (a—>Db) >fa-—->1Fhb

interface Applicative m => Monad m where
(>>=) :ma —>(a->mb) >mb

=)

Monaadid ldrises TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* |drises on ka sisseehitatud monaadide tutibiklass

interface Functor f where
map : (@ > b) > fa —>"fb

interface Functor f => Applicative f where
pure : a —> f a
(<x>) : f (a—>Db) >fa-—->1Fhb

interface Applicative m => Monad m where <« sisseehitatud monaadide tuubiklass
(>>=) tma->(a->mb) ->mb

=)

Monaadid ldrises TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* |drises on ka sisseehitatud monaadide tutibiklass

interface Functor f where
map : (@ > b) > fa —>"fb

interface Functor f => Applicative f where
pure : a —> f a
(<x>) : f (a—>Db) >fa-—->1Fhb

interface Applicative m => Monad m where <« sisseehitatud monaadide tuubiklass
(>>=) tma->(a->mb) ->mb

* Niimoodi mitmekihiliselt monaadide konstrueerimine on tihti liiga kohmakas!

=)

Monaadid ldrises TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* |drises on ka sisseehitatud monaadide tutibiklass

interface Functor f where
map : (@ > b) > fa —>"fb

interface Functor f => Applicative f where
pure : a —> f a
(<x>) : f (a—>Db) >fa-—->1Fhb

interface Applicative m => Monad m where <« sisseehitatud monaadide tuubiklass
(>>=) tma->(a->mb) ->mb

* Niimoodi mitmekihiliselt monaadide konstrueerimine on tihti liiga kohmakas!

* Selle nadala (boonus)ulesannetes defineerime monaadid oma tuubiklassi abil

Monaad m => Functor m where ... interface Monaad (@ m : Type —> Type) where
Monaad m => Applicative m where ... return : a —>m a
Monaad m => Monad m where ... bind :ma->(a->mb) ->mb

=)

Naide 3: Avaldiste vaartustamine (do-notatsiooniga) TARTU ULIKOOL

=
=
& o
T —
=

L1

=)

Naide 3: Avaldiste vaartustamine (do-notatsiooniga) TARTU ULIKOOL

=
=
& o
T —
=

L1

* Kuna
* naitasime, et Option on Monaad
* iga Monaad on Monad

* iga Monad'i puhul saame
kasutada do-notatsiooni!

* tapselt nagu 1O programmides

Naide 3: Avaldiste vaartustamine (do-notatsiooniga) [l TARTU ULIKOOL

evald : Expr —> Option Int
evald (Num i) = return i

evald (el :+: e2) = do

vl <- evald4 el
v2 <- evald4 e2
return (vl + v2)

evald (el :—: e2) = do

vl <- evald4 el
v2 <- evald4 e2
return (vl - v2)

evald (el :x: e2) = do

vl <- evald4 el
v2 <- evald4 e2
return (vl *x v2)

evald (el :/: e2) = do

vl <- eval4 el
v2 <- evald4 e2

if v2 == 0 then throw else return (vl

* Kuna
* naitasime, et Option on Monaad
* iga Monaad on Monad

* iga Monad'i puhul saame
kasutada do-notatsiooni!

* tapselt nagu 1O programmides

‘div' v2)

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Vigade tootlemine

L1

b

Il TARTU ULIKOOL

nmm
1632

Vigade tootlemine

* Saame modelleerida ka Java/Pythoni-stiilis erandite tootlemist
tryCatch : Option a —> Option a —> Option a
tryCatch comp excHandler = case comp of

None => excHandler
Some X => return X

b

Il TARTU ULIKOOL

nmm
1632

Vigade tootlemine

* Saame modelleerida ka Java/Pythoni-stiilis erandite tootlemist
tryCatch : Option a —> Option a —> Option a
tryCatch comp excHandler = case comp of

None => excHandler
Some X => return X

* Naiteks
exp4 : Expr
exp4 = Num 4 :x: Num 3 :/: (Num 2 :—: Num 2)

Loengl5b> eval2 exp4d
None

Loengl5b> tryCatch (eval2 exp4) (return 42)
Some 42

b

Il TARTU ULIKOOL

nmm
1632

Vigade tootlemine

* Saame modelleerida ka Java/Pythoni-stiilis erandite tootlemist

tryCatch : Option a —> O/};Qn A —> Ontion A
tryCatch comp excHandler ﬁ\\\

Option on erijuht rohkemate eranditega monaadist

.. data Exc e a = MkExc (Either e a)
* Naiteks
eReturn @ a —> Exc e a
exp4 @ EXpr eReturn x = MkExc (Right x)
expd4 = Num 4 :*: Num 3 i/
eBind : Exc e a => (a —> Exc e b) —> Exc e b
Loeng15b> eval2 exp4 eBind comp f = case comp of
None MkExc (Left e) => MkExc (Left e)
) MkExc (Right x) => f x

Loeng15b> tryCatch (eval
Some 42 «\\\¥ 4///

b

X

il TARTU ULIKOOL

nmm
1632

Naide 4: Avaldiste vaartustamine (instrumenteeritult)

=)

Naide 4: Avaldiste vaartustamine (instrumenteeritult)

=
=
ey =pa—
T —
=

L1

TARTU ULIKOOL

* Vaatame jalle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

infix1l 10 :+:, :—:
infixl 11 :x%:

data Expr = Num Int
| (:+:) Expr Expr
| (:=:) Expr Expr
| (:x:) Expr Expr

b

il TARTU ULIKOOL

nmm
1632

Naide 4: Avaldiste vaartustamine (instrumenteeritult)

* Vaatame jalle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

infix1l 10 :+:, :—:
infixl 11 :x%:

data Expr = Num Int
| (:+:) Expr Expr
| (:=:) Expr Expr
| (:x:) Expr Expr

* Eesmark: defineerida vaartustaja, mis tagastab **ka** vaartustatud avaldiste arvu

* lihtne naide arvutuste/programmide instrumenteerimisest

* teised sarnased naited: tegevuste logimine, autentimine, dunaamiline verifitseerimine

=)

Naide 4: Avaldiste vaartustamine (instrumenteeritult) TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* Vaatame jalle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

infix1l 10 :+:, :—:
infixl 11 :x%:

data Expr = Num Int
| (:+:) Expr Expr
| (:=:) Expr Expr
| (:x:) Expr Expr

* Eesmark: defineerida vaartustaja, mis tagastab **ka** vaartustatud avaldiste arvu
* lihtne naide arvutuste/programmide instrumenteerimisest

* teised sarnased naited: tegevuste logimine, autentimine, dunaamiline verifitseerimine

 Naitame, et selline vaartustamine on ka naide monaadilistest arvutustest!

b

X

il TARTU ULIKOOL

nmm
1632

Naide 4: Avaldiste vaartustamine (instrumenteeritult)

=)

Naide 4: Avaldiste vaartustamine (instrumenteeritult) TARTU ULIKOOL

=
=
& o
T —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

Counter = Int

evall : Expr —> (Int,Counter)

=

Naide 4: Avaldiste vaartustamine (instrumenteeritult) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

Counter = Int

evall : Expr —> (Int,Counter)
evall (Num 1) = (i,0)
evall (el :+: e2) = case evall el of

(vl,cl) => case evall e2 of
(v2,c2) == (vl + v2 , cl1 + c2 + 1)

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl - v2 , cl1 + c2 + 1)

evall (el :-: e2)

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl %« v2 , c1l + c2 + 1)

evall (el :x: e2)

Naide 4: Avaldiste vaartustamine (instrumenteeritult) @l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)
Counter = Int g A
expl : Expr
evall : Expr —> (Int,Counter) expl = Num 1 :+: Num 2
evall (Num i) = (i,0) exp2 i Expr
exp2 = Num 2 :x: (Num 4 :—: Num 1)
evall (el :+: e2) = case evall el of
(vl,cl) => case | Loengl5c> evall expl
(V2 (3, 1)
evall (el :-: e2) = case evall el of Loengl5c> evall exp2
(vl,cl) => case | (6, 2)
(VZ\\ /

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl %« v2 , c1l + c2 + 1)

evall (el :x: e2)

=

Naide 4: Avaldiste vaartustamine (instrumenteeritult) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

Counter = Int

evall : Expr —> (Int,Counter)
evall (Num 1) = (i,0)
evall (el :+: e2) = case evall el of

(vl,cl) => case evall e2 of
(v2,c2) == (vl + v2 , cl1 + c2 + 1)

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl - v2 , cl1 + c2 + 1)

evall (el :-: e2)

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl %« v2 , c1l + c2 + 1)

evall (el :x: e2)

b

Naide 4: Avaldiste vaartustamine (instrumenteeritult) [l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)
Counter = Int ~ ~

* Samasugused korduvad mustrid nagu varem:
evall : Expr —> (Int,Counter)
* vaartuste tagastamine
evall (Num i) = (i,0)
* arvutuste jarjestikku kaivitamine
evall (el :+: e2) = case evall
(vli,cl) 7 e instrumenteerimine (loendurile +| tegemine)
\ J

evall (el :—: e2) case evall el of
(vl,cl) => case evall e2 of

(v2,c2) == (vl - v2 , cl + c2 + 1)

case evall el of
(vl,cl) => case evall e2 of
(v2,c2) => (vl %« v2 , c1l + c2 + 1)

evall (el :x: e2)

TARTU ULIKOOL

_
—_—
3 m—
—_
=

=

Korduvad mustrid instrumenteerimisel

b

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid instrumenteerimisel

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

b

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid instrumenteerimisel

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilma avaldisi vaartustamata (loendur on 0)

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

Korduvad mustrid instrumenteerimisel

b

Il TARTU ULIKOOL

nmm
1632

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilma avaldisi vaartustamata

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

* Instrumenteeritud arvutuste jarjestikku jooksutamine
cBind : Ctr a —> (a —> Ctr b) —> Ctr b

cBind comp f = case comp of
MkCtr (x,cl) => case (f x) of

MkCtr (y,c2) => MkCtr (y , cl1 + c2)

=)

Korduvad mustrid instrumenteerimisel TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilma avaldisi vaartustamata (loendur on 0)

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

* Instrumenteeritud arvutuste jarjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a == (a —> Ctr b) —> Ctr b
cBind comp f = case comp of
MkCtr (x,cl) => case (f x) of
MkCtr (y,c2) => MkCtr (y , cl1 + c2)

* Avaldiste vaartustamise arvu loendamine (loendur on 1)

cCount : Ctr ()
cCount = MkCtr ((), 1)

b

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid instrumenteerimisel

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilma avaldisi vaartustamata

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

* Instrumenteeritud arvutuste jarjestikku jooksutamine

cBind : Ctr a == (a —> Ctr b) —> Ctr b
cBind comp f = case comp of
MkCtr (x,cl) => case (f x) of
MkCtr (y,c2) => MkCtr (y , cl1 + c2)

 Avaldiste vaartustamise arvu loendamine

Monaad Ctr where
cCount : Ctr () return = cReturn
cCount = MkCtr ((), 1) bind cBind

Korduvad mustrid instrumenteerimisel

TARTU ULIKOOL

=)

=
=
ey =pa—
T —
=

L1

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilmpa avaldisi vér/
Counter ei pea olema ainult Int

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

* Instrumenteeritud arvutuste jarjestik

cBind : Ctr a —> (a —> Ctr b) — Ctr
cBind comp f = case comp of

MkCtr (x,cl) => case

MK

. Avaldiste viirtustamise arvu loendg >3ame nn Uldise kirjutajamonaadi

cCount : Ctr ()
cCount = MkCtr ((), 1)

\-

Voib parametriseerida suvalise Monoid-iga

interface Semigroup ty where

interface Semigroup ty => Monoid ty where

~

(<+>) : ty —> ty —> ty

neutral : ty

(vt ldrise koodi) |

4//1

b

Il TARTU ULIKOOL

nmm
1632

Korduvad mustrid instrumenteerimisel

* Instrumenteeritud arvutuste tuup

data Ctr a = MkCtr (a,Counter)

* Vaartuse tagastamine ilma avaldisi vaartustamata

cReturn = a —> Ctr a
cReturn x = MkCtr (x,0)

* Instrumenteeritud arvutuste jarjestikku jooksutamine

cBind : Ctr a == (a —> Ctr b) —> Ctr b
cBind comp f = case comp of
MkCtr (x,cl) => case (f x) of
MkCtr (y,c2) => MkCtr (y , cl1 + c2)

 Avaldiste vaartustamise arvu loendamine

Monaad Ctr where
cCount : Ctr () return = cReturn
cCount = MkCtr ((), 1) bind cBind

=)

Naide 4: Avaldiste vaartustamine (do-notatsiooniga) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

eval3 : Expr —> Ctr Int
eval3 (Num i) = return i

eval3 (el :+: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl + v2)

eval3 (el :—: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl - v2)

eval3 (el :x: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl x v2)

Naide 4: Avaldiste vaartustamine (do-notatsiooniga)

TARTU ULIKOOL

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

eval3 : Expr —> Ctr Int
eval3 (Num i) = return i

eval3 (el :+: e2) = do
vl <- eval3 el
v2 <— eval3 e2 . L .)
count <4 avaldise vaartustamise loendamine

return (vl + v2)

eval3 (el :—: e2) = do
vl <- eval3 el
v2 <- eval3 e2) L))
count <4 avaldise vaartustamise loendamine
return (vl - v2)

eval3 (el :x: e2) = do
vl <- eval3 el
v2 <- eval3 e2

count 4— avaldise vaartustamise loendamine
return (vl x v2)

=)

Naide 4: Avaldiste vaartustamine (do-notatsiooniga) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

eval3 : Expr —> Ctr Int
eval3 (Num i) = return i

eval3 (el :+: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl + v2)

eval3 (el :—: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl - v2)

eval3 (el :x: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl x v2)

Naide 4: Avaldiste vaartustamine (do-notatsiooniga) [l TARTU ULIKOOL
* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)
eval3 : Expr —> Ctr Int 4 N
) = . expl : Expr
eval3 (Num i) = return i expl = Num 1 :+i Num 2
eval3 (el :+: e2) = do
vl <- eval3 el Loengl5c> eval3 expl
v2 <—- eval3 e2 MkCtr (3, 1)
count
return (vl + v2)
13 (el 2) =d exp2 1 Expr
eva eL :.—. € = ao — .y S
01 < ovals o1 exp2 = Num 2 :*: (Num 4 :—=: Num 1)
v2 <—- eval3 e2
count Loengl5c> eval3 exp2
return (vl - v2) MkCtr (6, 2)
eval3 (el :x: e2) = do \. v

vl <- eval3 el
v2 <- eval3 e2
count

return (vl *x v2)

=)

Naide 4: Avaldiste vaartustamine (do-notatsiooniga) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Aritmeetiliste avaldiste vaartustamine (instrumenteeritult)

eval3 : Expr —> Ctr Int
eval3 (Num i) = return i

eval3 (el :+: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl + v2)

eval3 (el :—: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl - v2)

eval3 (el :x: e2) = do
vl <- eval3 el
v2 <- eval3 e2
count
return (vl x v2)

-~

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL

I

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

* Idrise programmides esinevad muutujad pole muudetavad ega lilekirjutatavad

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

* Idrise programmides esinevad muutujad pole muudetavad ega lilekirjutatavad

* Seetottu ei saa me ldrises jargmisel kujul olevaid programme esitada

TARTU ULIKOOL

=

Naide 5: Muudetavad muutujad (nagu Javas, ...)

_
—_—
5\ m—
—_
1=

L1

* Idrise programmides esinevad muutujad pole muudetavad ega lilekirjutatavad

* Seetottu ei saa me ldrises jargmisel kujul olevaid programme esitada

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {

X = X + 1;
y =X+ 73;
X = 42;
return z

}

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

* Idrise programmides esinevad muutujad pole muudetavad ega lilekirjutatavad

* Seetottu ei saa me ldrises jargmisel kujul olevaid programme esitada

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {

X = X + 1;
y =X+ 73;
X = 42;
return z

}

* Probleemiks on Idrise funktsioonide puhtus ning malu mittekasutamine

-~

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL

I

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

* Naitame, et muudetavaid muutujaid saab monaadiga modelleerida

TARTU ULIKOOL

_
—_—
5\ m—
—_
1=

=

Naide 5: Muudetavad muutujad (nagu Javas, ...)

L1

* Naitame, et muudetavaid muutujaid saab monaadiga modelleerida

* Selle jaoks vaatleme funktsioonide f : a —> b asemel funktsioone f : a —> St b

TARTU ULIKOOL

_
—_—
5\ m—
—_
1=

=

Naide 5: Muudetavad muutujad (nagu Javas, ...)

L1

* Naitame, et muudetavaid muutujaid saab monaadiga modelleerida

* Selle jaoks vaatleme funktsioonide f : a —> b asemel funktsioone f : a —> St b
St' : Type —> Type
St' a = State —> (a,State)

data St : Type —> Type where
MkSt :+ St' a —> St a

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

* Naitame, et muudetavaid muutujaid saab monaadiga modelleerida

* Selle jaoks vaatleme funktsioonide f : a —> b asemel funktsioone f : a —> St b

St' : Type —> Type data Vars = X | Y | Z
St' a = State —> (a,State)

State : Type
data St : Type —> Type where State = Vars —> Int

MkSt : St' a —> St a

lookup : Vars —> State —> Int
lookup X s = s X

update : Vars —> Int —> State —> State
update x 1 s y = if x ==y then 1 else s vy

=)

Naide 5: Muudetavad muutujad (nagu Javas, ...) TARTU ULIKOOL

=
=
ey =pa—
T —
=

L1

* Naitame, et muudetavaid muutujaid saab monaadiga modelleerida

* Selle jaoks vaatleme funktsioonide f : a —> b asemel funktsioone f : a —> St b

St' : Type —> Type data Vars = X | Y | Z
St' a = State —> (a,State)

State : Type
data St : Type —> Type where State = Vars —> Int

MkSt : St' a —> St a
lookup : Vars —> State —> Int

lookup X s = s X
update : Vars —> Int —> State —> State
update x 1 s y = if x ==y then 1 else s vy

* Funktsioonid f : a -> St b teisendavad algoleku lI6ppvaartuseks ja Ioppolekuks

-~

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL

I

TARTU ULIKOOL

_
—_—
5\ m—
—_
1=

=

Naide 5: Muudetavad muutujad (nagu Javas, ...)

L1

St' : Type — Type
St' a = State —> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

St' : Type — Type
St' a = State —> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

=)

Naide 5: Muudetavad muutujad (nagu Javas, ...) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

St' : Type — Type
St' a = State -> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

Monaad St where
return = sReturn
bind = sBind

b

Naide 5: Muudetavad muutujad (nagu Javas,...) @ TARTU ULIKOOL
St' : Type — Type
St' a = State —> (a,State)
data St : Type —> Type where
MkSt : St' a —> St a ﬁ\\\

State ei pea olema ainult Vars —> Int

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))| ST' : Type —> Type —> Type
ST'"sa=s -> (a,s)

sBind : St a —=> (a —> St b) —

: _ — data ST : Type —> Type —> Type where
sBind f g = MkSt (\ s => case fi " F " * "0 7 oo .

MkSt
stReturn = a —> ST s a
stReturn x = ...
Monaad St where stBind % ST_S a—> (a—-—>STsb) —>STshb
return = sReturn stBind g=...
bind = sBind \\\¥ 4///

=)

Naide 5: Muudetavad muutujad (nagu Javas, ...) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

St' : Type — Type
St' a = State -> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

Monaad St where
return = sReturn
bind = sBind

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

St' : Type — Type
St' a = State —> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...)

St' : Type — Type
St' a = State -> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

prefix 8 ™!
(~!) @ Vars —> St Int
(~1) x = MkSt (\ s => (lookup x s,s))

=)

Naide 5: Muudetavad muutujad (nagu Javas, ...) TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

St' : Type — Type
St' a = State —> (a,State)

data St : Type —> Type where
MkSt : St' a —> St a

sReturn : a —> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a —> (a —> St b) —> St b
sBind f g = MkSt (\ s => case f of
MkSt f' => case f' s of
(x,s') => case g x of
MkSt g' => g' s')

prefix 8 ~! infix 7 7=
(~1) : Vars —> St Int (=) : Vars —> Int —> St ()
(~1) x = MkSt (\ s => (lookup x s,s)) (=) x i = MkSt (\ s => ((),update x i s))

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL
St' : Type —> Type

St' a = State —> (*\\\
dal\ﬁisit: :SIYpS :> | Need muutujate lugemise ja kirjutamise operatsioonid

on spetsiifilised olekumonaadile olekutuubiga Vars -> Int

sReturn

J

MkSt f' => case f' s of
(x,s') => case g x of

MkSt g' => g' s')

refix 8 ™! infix 7 "=
(~1) : Vars —> St Int (~=) : Vars -> Int => St ()
(~1) x = MkSt (\ s => (lookup x s,s)) (=) x i = MkSt (\ s => ((),update x 1 s))

-~

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL

I

TARTU ULIKOOL

=

Naide 5: Muudetavad muutujad (nagu Javas, ...

* Java programm

int x
int vy
int z

1;
2;
3

N
’

int prog(int i, int j) {
X = X + 1i;
y =X+ 73;
X = 42;

return z

}

b

Il TARTU ULIKOOL

nmm
1632

Naide 5: Muudetavad muutujad (nagu Javas, ...

S
f—

* Java programm do-notatsiooniga * Java programm
progl : Int —> Int —> St Int int x = 1;
int y = 2;
progl i j = do int z = 3;
X <— "X int prog(int i, int j) {

X M= X + 1
X = X + 1;
X' <= ™M X

Y *= x' +] y = X + 3;
X ~= 42 X = 42;
N7 return z

}

-~

Naide 5: Muudetavad muutujad (nagu Javas, ...) Il TARTU ULIKOOL

I

b

Naide 5: Muudetavad muutujad (nagu Javas, ...) Wil TARTU ULIKOOL

* Muudetavate muutujatega programmide jooksutamiseks defineerime run funktsiooni

run : St a —> State —> (a,State)
run (MkSt f) s = f s

stateToList : State —> List Int
stateToList s = [s X , s Y , s Z]

runToList : St a —> State —> (a,List Int)
runToList f s = let (x,s') = run f s in (x, stateToList s')

TARTU ULIKOOL

=)

Naide 5: Muudetavad muutujad (nagu Javas, ...)

=
=
ey =pa—
O —
=

L1

* Muudetavate muutujatega programmide jooksutamiseks defineerime run funktsiooni

run : St a —> State —> (a,State)
run (MkSt f) s = f s

stateToList : State —> List Int
stateToList s = [s X , s Y , s Z]

runToList : St a —> State —> (a,List Int)
runToList f s = let (x,s') = run f s in (x, stateToList s')

* Naiteks valime oma programmi muutujate algolekuks jargmise oleku

initialState : State
initialState X =
initialState Y = 2
initialState 7 =

Naide 5: Muudetavad muutujad (nagu Javas,...) 0 TarTU ULIKOOL
* Java programm do-notatsiooniga * Algolek
progl : Int —> Int —> St Int initialState : State
initialState X =1
progl 1 j = do initialState Y = 2

initialState Z
X <— ™ X
X "= X + 1

x'" <= "1 X
Y *= x' +]

X ~= 42

~ 7

Naide 5: Muudetavad muutujad (nagu Javas,...) @l TARTU ULIKOOL
* Java programm do-notatsiooniga * Algolek
progl : Int —> Int —> St Int initialState : State
initialState X =1
progl 1 j = do initialState Y = 2
initialState Z = 3
X <— "~ X
Xo=x+1 //[;en915d> run (progl 4 7) initialState ‘\\
Wl < ALY (3, update X 42 (update Y 12 (update X 5 initialState)))

Y *= x' +]

X A= 47 Loengl5d> runToList (progl 4 7) initialState
- (3, [42, 12, 3])

~ 7
Loeng1l5d> runToList (progl 4 7) (\ _ => 0)

\\i?, [42, 11, 0]) 4//

-~

Naide 6: Puhtad, efekti-vabad funktsioonid fli TARTU ULIKOOL

I

b

Il TARTU ULIKOOL

nmm
1632

Naide 6: Puhtad, efekti-vabad funktsioonid

* Puhtad funktsioonid on samuti naide monaadilistest arvutustest!

Naide 6: Puhtad, efekti-vabad funktsioonid

b

Il TARTU ULIKOOL

nmm
1632

* Puhtad funktsioonid on samuti naide monaadilistest arvutustest!

data Id

d

iReturn :
1Return x

iBind :

Ida -—> (a -—>Idb) = Id b
iBind (MkId x') f = f x'

d

MkId a

—> Id a
MkId x

Monaad Id where

return
bind

iReturn
iBind

Naide 6: Puhtad, efekti-vabad funktsioonid

=)

TARTU ULIKOOL

=
=
ey =pa—
O —
=

L1

* Puhtad funktsioonid on samuti naide monaadilistest arvutustest!

data Id

d

iReturn :
1Return x

iBind :

Ida -—> (a -—>Idb) = Id b
iBind (MkId x') f = f x'

d

MkId a

—> Id a
MkId x

Monaad Id where

return
bind

iReturn
iBind

pureprog : Int —> Id Int -> Id Int

pureprog X y =
return (x x ly + 7)

Naide 6: Puhtad, efekti-vabad funktsioonid Il TARTU ULIKOOL
e Puhtad funktsioonid on samuti naide monaadilistest arvutustest!
data Id a = MKkId a pureprog : Int —> Id Int —> Id Int
iReturn : a —> Id a pureprog x y =
1Return x = MkId Xx return (x x ly + 7)

iBind : Id a => (a —> Id b) —> Id b
iBind (MkId x') f = f x'

Monaad Id where
return 1Return
bind iBind

+ Id a on isomorfne tuubiga a

i: Ida—-—> a j +a—>1Id a
i (MkId x) = x j x = MkId X

Naide 6: Puhtad, efekti-vabad funktsioonid Il TARTU ULIKOOL
e Puhtad funktsioonid on samuti naide monaadilistest arvutustest!
data Id a = MKkId a pureprog : Int —> Id Int —> Id Int
iReturn : a —> Id a pureprog x y =
1Return x = MkId Xx return (x x ly + 7)

iBind : Id a => (a —> Id b) —> Id b
iBind (MkId x') f = f x'

Monaad Id where

return = iReturn
bind = iBind
. ij:(X:a)—>i(jX)=X
- Id a on isomorfne tuubiga a ij x = Refl

i: Ida—-—>a j :a—->1Ida ji 1 (x = Id a) — j (i x) =X
i (MkId x) = x j x = MkId x ji (MkId x) = Refl

b

Il TARTU ULIKOOL

nmm
1632

Monaadid teistes programmeerimiskeeltes

TARTU ULIKOOL

_
—_—
3 m—
—_
1=

=

Monaadid teistes programmeerimiskeeltes

L1

* Algebralised efektid ja nende tootlejad (OCaml, Eff, Koka, Haskell, ...)

b

X

Il TARTU ULIKOOL

Monaadid teistes programmeerimiskeeltes

1632

* Algebralised efektid ja nende tootlejad (OCaml, Eff, Koka, Haskell, ...)

» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas (OCaml, ...)

Monaadid teistes programmeerimiskeeltes TARTU ULIKOOL

—_—
—_—
3 m—
—_
1=

=

L1

* Algebralised efektid ja nende tootlejad (OCaml, Eff, Koka, Haskell, ...)

» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas (OCaml, ...)

val incr : ref nat —> nat

let incr (r:ref nat) =
r:=1Ir + 1;
I'r

Monaadid teistes programmeerimiskeeltes TARTU ULIKOOL

—_—
—_—
3 m—
—_
1=

=

L1

* Algebralised efektid ja nende tootlejad (OCaml, Eff, Koka, Haskell, ...)

» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas (OCaml, ...)

val incr : ref nat —> nat

—
let incr (r:ref nat) =

r:=1Ir + 1;

I'r

b

Monaadid teistes programmeerimiskeeltes Ml TARTU ULIKOOL

* Algebralised efektid ja nende tootlejad

» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas

val incr : ref nat —> nat val incr_expl : ref nat—> St nat
—>
let incr (r:ref nat) = let incr_expl (r:ref nat) =
r:=1!r + 1; Ir >>= \ v =>
r (v + 1) >>= \ w =>
(r :i=w) >=\ _ =

return w

Monaadid teistes programmeerimiskeeltes Il TARTU ULIKOOL
* Algebralised efektid ja nende tootlejad
» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas
val incr : ref nat —> nat val incr_expl : ref nat—> St nat
—
let incr (r:ref nat) = let incr_expl (r:ref nat) =
r:=1!r + 1; Ir >>= \ v =>
r (v + 1) >>= \ w =>
(r :i=w) >=\ _ =
return w

* Toestamist toetavates keeltes imperatiivse koodi korrektsuse kontroll

Monaadid teistes programmeerimiskeeltes Il TARTU ULIKOOL
* Algebralised efektid ja nende tootlejad
» Korvalefektide sisaldavate keelte tuubikontrollis ja semantikas
val incr : ref nat —> nat val incr_expl : ref nat—> St nat
—
let incr (r:ref nat) = let incr_expl (r:ref nat) =
r:=1!r + 1; Ir >>= \ v =>
r (v + 1) >>= \ w =>
(r :i=w) >=\ _ =
return w
* Toestamist toetavates keeltes imperatiivse koodi korrektsuse kontroll
val incr : (r:ref nat)
-> State nat (requires (\ s => live s r))
(ensures (\ s v s' => lookup r s' == lookup r s + 1 /\

v == lookup r s'))

b

Il TARTU ULIKOOL

nmm
1632

Monaadid programmeerimiskeeles FStar ﬁ

Monaadid programmeerimiskeeles FStar ﬁ

TARTU ULIKOOL

f ™\
miTLS-fstar —— TLS Key Sched. ——{ State
““““““““““““““ Separating
/\ Proofs
TLS Rec. || QUIC Rec.
Hax SSProve
\Protocol proofs RROCQ)
' SAK Y N\
orender| EverCrypt / = ~
provider \ fS— TLS [| QUIC \/\/IndOIWS NI\/
d hoc fi
/ HACLXN X.509 | fovnsormin
crypto o _—7Certificates
Portable
ValeCrypt || HACL* |ayptome || QD | | ASN.1* | | 3D
T .

L Cryptogragl)hic algorithms x::;;ad Data formats & tools y
e l A
Vale —— FverParse Steel

For assembly Formatting tools
Concurrency &
programs I_OW * P u | se separation logic
For C-like programs
L Embedded domain-specific languages
(.
l\/lonotomc Stwto Dijkstra
Meta-F* | monads
ZB‘_ Re\ational
_ Proof-oriented programming framework lOgiCS
Compilatilon targets / Ka Ra \Vii e I_ \ \
s)

Deployment

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

Monaadid programmeerimiskeeles FStar ﬁ

b

TARTU ULIKOOL

=
e
ey =pa—
O —

=

4 N\
mMiTLS-fstar ——— TLS Key Sched. —— State
Separating
/\ Proofs
TLS Rec. || QUIC Rec.
SSProve
\Protocol proofs WROCQ)
' SA¥ Y \
| EverCrypt / e i
provider \y'i) L simb crypto TLS [|QUIC V\/IndOIWS NI\/
d hoc fi
/ HACLN X.509 | fovnsormin
crypto) Certificates
Portable
ValeCrypt || HACL* |eyptome || QD | [ASN.1* | | 3D
T) with broad
L Cryptogra;l)hlc algorithms coverage Data formats & tools y
e ! A
Vale —— FverParse Steel
For assembly Formatting tools
Concurrency &
programs LOW * P u | se separation logic
For C-like programs
Embedded domain-specific languages
> Ak .
Monotonic State| _ Dijkstra
monads
ZB'_ \ Relation3|
\Proofforier]ted programming framework l Iogics
Compilati'ontargets / KaRaMeL \ \)
\ J
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

val incr

: (r:ref nat)
—> State nat
(requires (\ s => live s r))
(ensures (\ s v s'
lookup r s' == lookup r s + 1 /\
v == lookup r s'))

=>

Monaadid programmeerimiskeeles FStar ﬁ

b

TARTU ULIKOOL

=
e
ey =pa—
O —

=

f ™\
mMiTLS-fstar ——— TLS Key Sched. —— State
Separating
/\ Proofs
TLS Rec. || QUIC Rec.
SSProve
\Protocol proofs »ROCQ)
' AF¥ Y N\
Ceer| EverCrypt / =)
id
provider \ SIMD crypto TLS || QUIC Wmdolvvs NI\/
d hoc fi
/ HACLXN X.509 | fovnsormin
crypto) Certificates
Portable
ValeCrypt ||HACL* |eyptoinc || QD [| ASN.1* | | 3D
T) with broad
L Cryptogra;l)hlc algorithms coverage Data formats & tools y
4 l N
Vale —— FverParse Steel
For assembly Formatting tools
Concurrency &
programs LOW * P u | se separation logic
For C-like programs
Embedded domain-specific languages
> % T ~
Monotonic State| _ Dijkstra
Meta-F* monads
254_ | Relation
\Proofforier]ted programming framework l

>

f
Compilation targets

KaRaMel

i

~N)

{

v,

Deployment

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

val incr

: (r:ref nat)
—> State nat
(requires (\ s => live s r))
(ensures (\ s v s' =>
lookup r s' == lookup r s + 1 /\
v == lookup r s'))

Monaadid programmeerimiskeeles FStar ﬁ i

TARTU ULIKOOL

For C-I

ike programs

Embedded domain-specific languages

(N
miTLS-fstar —— TLS Key Sched. ——{ State
Separating
/\ Proofs
TLS Rec. || QUIC Rec.
Hax SSProve
Protocol proofs — »WROCQ
> p ¥ / 7 \ <
Crypto [T
EverCrypt ~
provider \y'i) L simb crypto TLS [|QUIC V\/IndOIWS NI\/
/ ACDN X509 | fo st
£rpto . 7 Certificates
Py
ValeCrypt || HACL® cpome || QD | | ASN.1* | | 3D
with broad
L Cryptogra;l)hlc algorithms coverage L Data formats & tools y
4 l N\
Vale —— EverParse Steel
For assembly Formatting tools
programs Concurrency &
I_OW * P u | S@ |/ separation logic

Ve

Z3—

\Proofforier]ted programming framework

V4

}

Monotonic State

Dijkstra
monads

Meta-F*

| Relation

>

f
Compilation targets

KaRaMel

-

}

~N)

Deployment

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

fn rec append (x y:1list 't) (11 12:erased (list 't))

requires 1is_1list x 11 *x
is_list y 12 *x%
pure (Some? x)

ensures is_list x (11 @ 12)

val incr : (r:ref nat)
—> State nat
(requires (\ s => live s r))

(ensures (\ s v s' =>
lookup r s' == lookup r s + 1 /\
v == lookup r s'))

Monaadid programmeerimiskeeles FStar ﬁ i

TARTU ULIKOOL

(N
mMiTLS-fstar —i TLS Key Sched. —— State
"""""""""""""" Separating
/\ Bert13 Proof
TLS Rec. || QUIC Rec.
Hax Prove
| Protocol proofs ROCQ)
(o = — . T~)
orowder| EVErCrypt / TLS || QWIC | | Windows NV

\ 7 SIMD crypto T T

Ad hoc formats
Assembly / HACLXN X.509 for virtualization
crypto ertificat

es
Portable
ValeCrypt [|HACL* |eypoine || QD SN.1* 3D
T 5
L Cryptogra;l)hic algorithms x‘t,::::d L Data formats & tools y
4 l N\
Vale —— FverParse Steel
For assembly Formatting tools
programs Concurrency &

separation logic

Low™ Pulse

For C-like programs

Embedded domain-specific languages

Ve VS T =
Monotonic State| _ Dijkstra
Meta-F* monads
Z <_ - ‘ [
Relation
_ Proof-oriented programming framework l

>

f
Compilation targets

KaRaMel

Deployment

~N

v,

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

fn rec append (x y:1llist 't) (11 12:erased (list 't))

requires is_list x 11 *xx
is_list y 12 *xxk
pure (Some? x)

ensures is_list x (11 @ 12)

val incr : (r:ref nat)
—> State nat
(requires (\ s => live s r))
(ensures (\ s v s' =>
lookup r s' lookup r s + 1 /\
v == lookup r s'))

Monaadid programmeerimiskeeles FStar ﬁ fll TARTU ULIKOOL

MiTLS-fstar —— TLS Key Sched. — State fn rec append (x y:1list 't) (11 12:erased (list 't))
S A Separating
/P\\\\‘ Bert13 Proof requires 1is_1list x 11 s
TLSW is_list y 12 *x
ax Prove
N N i 0T 1 pure (Some? Xx)
e EverCrypt e i
rovider W d NV : .
p e (| 10][[LAES ensures is_list x (11 @ 12)
/ HACDXN X.509 | forviuainaton
crypto ertificates {
ValeCrypt || HACL* |cypome || QD | | ASN.1% | | 3D
Cryptogra!}hicalgorithms x‘t,::::d Data formats & tools LI I |
—t : <
Vale — FverParse Steel '
For assembly Formatting tools]
programs LOW* Pulse ::::;I;rii?\cl‘:);c Hoare Ioglc
For ke programs val incr : (r:ref nat)
Embedded domain-specific languages
f l\/lonot\(;:ﬂcsmtcl Dijkstra -> State nat
Meta-F* | monads . .
LB— oo (requires (\ s => live s r))
\Proofforier]ted programming framework l

" e e KaRaMel \ A (ensures (\ SV SI =>
l N lookup r s' == lookup r s + 1 /\
.) v == lookup r s'))

Deployment

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

Monaadid programmeerimiskeeles FStar ﬁ il

TARTU ULIKOOL

4 N
mMiTLS-fstar —i TLS Key Sched. —— State
"""""""""""""" Separating
/\ Bert13 Proof
TLS Rec. || QUIC Rec.
Hax Prove
| Protocol proofs ROCO)
(. SAK ,\‘ \ |
orowder| EVErCrypt / TLS || QWIC | | Windows NV

\ 7 SIMD crypto T T

Ad hoc formats
Assembly / HACLXN X.509 for virtualization
crypto ertificat

es
Portable
VaIeCrypt HACL™ |cyptoine || QD SN.1*% 3D
L Cryptograrl)hlc algorithms x:::;ad L Data formats & tools
(!
Vale —— EverParse Steel
For assembly Formatting tools
Concurrency &
programs LOW * P u | se separation logic

For C-like programs

Embedded domain-specific languages

4
<

Ve % T =
Monotonic State| _ Dijkstra
Meta-F* |monads
Z — - ‘ i
Relation
\Proofforier]ted programming framework l

\

f
Compilation targets

KaRaMel

s R

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

fn rec append (x y:1llist 't) (11 12:erased (list 't))

requires is_list x 11 *xx
is_list y 12 *xxk
pure (Some? x)

is_list x (11 @ 12) Separation logic

Ensures

Hoare logic

val incr : (r:ref nat)
—> State nat
(requires (\ s => live s r))
(ensures (\ s v s'
lookup r s' lookup r s + 1 /\
v == lookup r s'))

=>

b

X

Il TARTU ULIKOOL

nmm
1632

Kokkuvotteks

b

Il TARTU ULIKOOL

nmm
1632

Kokkuvotteks

* Monaad = jarjestikuste, korvalefekte sisaldavate programmide abstraktsioon

=)

Kokkuvotteks TARTU ULIKOOL

=
=
& o
T —
=

L1

* Monaad = jarjestikuste, korvalefekte sisaldavate programmide abstraktsioon

* Palju naiteid
* puhtad funktsioonid (f : Nat —> Id Bool)
* sisend-valjund (f : Nat —> I0 Bool)
* erandid (f : Nat -> Option Bool)
* malu kasutus (f : Nat —-> St Bool) monaadid (f : Nat —> m Bool)
* mittedeterminism (f : Nat —> List Bool)
* toenaosused (f : Nat —> Dist Bool)

* termipuud (f : Nat —> Term Bool)

TARTU ULIKOOL

=)

Kokkuvotteks

=
=
& o
T —
=

L1

* Monaad = jarjestikuste, korvalefekte sisaldavate programmide abstraktsioon

* Palju naiteid
* puhtad funktsioonid (f : Nat —> Id Bool)
* sisend-valjund (f : Nat —> I0 Bool)
* erandid (f : Nat -> Option Bool)
* malu kasutus (f : Nat —-> St Bool) monaadid (f : Nat —> m Bool)
* mittedeterminism (f : Nat —> List Bool)
* toenaosused (f : Nat —> Dist Bool)

* termipuud (f : Nat —> Term Bool)

* Veel rohkem naiteid saab olemasolevate monaadide komponeerimisest

Kokkuv/~ Mis edasi? W Likoor

 Monaac aktsioon
* Palju nz
* puhtg
* sisen
* erang
* malu
. m Bool)
* mitte
* toen:

* term

. Vee.|. .rohh\ /zst 33

Kokkuv/~ Mis edasi? W Likoor

 Monaac aktsioon
* Palju nz
* puhtg
* sisen
* erang
* malu
. m Bool)
* mitte
* toen:

* term

. Vee.|. .rohh\ /zst 33

Kokkuv/~ Mis edasi? W Likoor

« Monaad ° Loogika Arvutiteaduses (LTAT.03.021, BSc, kevaditi) aktsioon
* Curry-Howardi isomorphismi loogika-poolne osa
* Paljung . erinevad loogika tuletus- ja tdestussiisteemid
e puhty ° automaatse toestamise elemente (resolutsioon)
, * ajaloogikad (ajas muutuvate omaduste kontrollimine)
* sisen : : .
S15€ * modaalloogikad (mina tean, et sina tead, et tema teab, et ...)
° eranc e programmiloogikad (imperatiivsete programmide korrektsus)
* malu
m Bool)
° mitte
* toens
* term
([]

. Vee.|. .roht\ Jst 33

Kokkuv/~ Mis edasi? W Likoor

« Monaad ° Loogika Arvutiteaduses (LTAT.03.021, BSc, kevaditi) aktsioon
* Curry-Howardi isomorphismi loogika-poolne osa

* Paljung . erinevad loogika tuletus- ja tdestussiisteemid

e puhty ° automaatse toestamise elemente (resolutsioon)

, * ajaloogikad (ajas muutuvate omaduste kontrollimine)
* sisen : : .
S15€ * modaalloogikad (mina tean, et sina tead, et tema teab, et ...)
* eranc * programmiloogikad (imperatiivsete programmide korrektsus)
* malu

e Programmeerimiskeelte P6himatted (LTAT.03.027, MSc, siigiseti) | m Bool)

* MItte . iitkab sealt, kus FP aine (teooriaosa) pooleli jiib

e toen: * arvutuslikud korvalefektid (ja muidugi ka monaadid)

* arvutuslike korvalefektide tootlejad (eranditootlejad+++)

* alamtuupimine, polumorfism, efekti-ja-tuubisusteemid
soltuvate tuupide teooria edasiarendusi

e Veel roh|K° lineaarsed ja modaalsed tuubid, programmiloogikad tuupide sees)St 33

* term

Aitah kuulamast!

TARTU ULIKOOL

G{T - DRAGORN!

HOW TO KILL THE DRAGON BY ® toggl
USING 9 PROGRAMMING Goon Squav
LANGUAGES

You HAVE PYTHON

You DISCOVER YouR
TOOLS ARE ONLY FOR
SLAYING A SNAKE,

EVERYBODY MARVELS AT
YOUR AWESOME DRAGON
SLAYING TooLS.

JUST AS YOU'RE ALMOST
PONE, APPLE RELEASES
ANOTHER DRAGON

You'vE GoT AN NSDragoN
CLASS, BUT You NEED To
WRITE AN 500 LOC EXTENSIO
TO IMPLEMENT SLAYABILITY

YOU HAVE SWIFT

NOW EVERYTHING'S ON
FIRE (ALSo, THE VERTICAL
CENTER HAS FAILED)

YoU TRY TO COVER THE
DRAGON WITH A HIGHLY
FLAMMABLE BLANKET

€ss [HTnL

YOUu HAVE SCALA

YOUR HORSE HAS CRASHED :(

You SET ALL REFERENCES To
THE DRAGON TO NULL.

THE DRAGON SEEMS GONE.

YOU GO FROM VILLAGE TO

VILLAGE FIGHTING THE SAME
DRAGON OVER AND OVER
\ /\.-

YOu MAKE A FORTUNE
IN THE PROCESS

AN

You HAVE LUA

AND EFFECTIVE WEAPON |

... BUT You'RE OUT OF AMMO

IT'S AN INCREDIBLY FAST

MIKE PALL HAS
THE LAST BULLETS,
BUT HE'S GonE & You
DON'T KNow HIS REAL
NAME OR EVEN WHAT
HE LOOKS LIKE

l Y1dris
You HAVE HASKELT

(AND A MoNAD)

You IMPLEMENT A MONAD To ENCAPSULATE
THE DRAGON KILLING S\DE-EFFECTS.

THE VILLAGERS ARE CONCERNED AND
URGE You To

You DON'T-SEE. WHAT
tu}: PROBLEM IS

1 BUT You SAY IT'S OK

You NEED HELP.

You HAVE
COFFEESCRIPT

Yov DoN'T HAVE DRAGON
SLAYING POWERS SO You
DRINK IT TO GET Goob

MART VIRKUS'|Z ToaGGL.COM

