
Monaadid ja
kõrvalefektid

Danel Ahman

1FP (Sügis 2025)

Funktsioonid Idrises

2

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

monaadid

• Samas on päris programmides aga tihti kasulikud ka kõrvalefektid
• sisend-väljund

• erandid (ingl exceptions) ja nende töötlemine

• mälu kasutus

• muudetavad (ingl mutable) muutujad

• mittedeterminism

• tõenäosuslikud arvutused

• ...

Funktsioonid Idrises

2

• Vaikimisi on Idrise funktsioonid puhtad, ilma kõrvalefektideta, matemaatilised
• f : Nat -> Bool

 (f : Nat -> IO Bool)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

 (f : Nat -> ???)

monaadid

Näide 1: Aritmeetiliste avaldiste väärtustamine

3

Näide 1: Aritmeetiliste avaldiste väärtustamine

3

• Aritmeetilised avaldised

infixl 10 :+:, :-:
infixl 11 :*:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr

Näide 1: Aritmeetiliste avaldiste väärtustamine

3

• Aritmeetilised avaldised

• Näited

infixl 10 :+:, :-:
infixl 11 :*:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr

exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

• Aritmeetiliste avaldiste väärtustamine (nende semantika arvutamine)

eval : Expr -> Int

eval (Num i) = i

eval (e1 :+: e2) = eval e1 + eval e2
eval (e1 :-: e2) = eval e1 - eval e2
eval (e1 :*: e2) = eval e1 * eval e2

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

• Aritmeetiliste avaldiste väärtustamine (nende semantika arvutamine)

eval : Expr -> Int

eval (Num i) = i

eval (e1 :+: e2) = eval e1 + eval e2
eval (e1 :-: e2) = eval e1 - eval e2
eval (e1 :*: e2) = eval e1 * eval e2

• Näited

exp1 : Expr
exp1 = Num 1 :+: Num 2

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

• Aritmeetiliste avaldiste väärtustamine (nende semantika arvutamine)

• Väljund

eval : Expr -> Int

eval (Num i) = i

eval (e1 :+: e2) = eval e1 + eval e2
eval (e1 :-: e2) = eval e1 - eval e2
eval (e1 :*: e2) = eval e1 * eval e2

Loeng15a> eval exp1
3

• Näited

exp1 : Expr
exp1 = Num 1 :+: Num 2

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

• Aritmeetiliste avaldiste väärtustamine (nende semantika arvutamine)

• Väljund

eval : Expr -> Int

eval (Num i) = i

eval (e1 :+: e2) = eval e1 + eval e2
eval (e1 :-: e2) = eval e1 - eval e2
eval (e1 :*: e2) = eval e1 * eval e2

Loeng15a> eval exp1
3

• Näited

exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Näide 1: Aritmeetiliste avaldiste väärtustamine

4

• Aritmeetiliste avaldiste väärtustamine (nende semantika arvutamine)

• Väljund

eval : Expr -> Int

eval (Num i) = i

eval (e1 :+: e2) = eval e1 + eval e2
eval (e1 :-: e2) = eval e1 - eval e2
eval (e1 :*: e2) = eval e1 * eval e2

Loeng15a> eval exp1
3

• Näited

exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Loeng15a> eval exp2
6

Näide 2: Avaldiste väärtustamine (koos jagamisega)

5

Näide 2: Avaldiste väärtustamine (koos jagamisega)

5

• Aritmeetilised avaldised (koos jagamisega)

infixl 10 :+:, :-:
infixl 11 :*:, :/:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr
 | (:/:) Expr Expr

Näide 2: Avaldiste väärtustamine (koos jagamisega)

5

• Aritmeetilised avaldised (koos jagamisega)

• Näited

infixl 10 :+:, :-:
infixl 11 :*:, :/:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr
 | (:/:) Expr Expr

exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Näide 2: Avaldiste väärtustamine (koos jagamisega)

5

• Aritmeetilised avaldised (koos jagamisega)

• Näited

infixl 10 :+:, :-:
infixl 11 :*:, :/:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr
 | (:/:) Expr Expr

exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

• Väljund

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Loeng15b> eval1 exp3
6

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

• Väljund

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Loeng15b> eval1 exp3
6

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval1 exp4
let False = True in
prim__div_Int 12 0

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

• Väljund

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Loeng15b> eval1 exp3
6

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval1 exp4
let False = True in
prim__div_Int 12 0

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

• Väljund

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Loeng15b> eval1 exp3
6

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

Viga, mida ei saa edasi töödelda!
(Error, mitte Exception)

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval1 exp4
let False = True in
prim__div_Int 12 0

Näide 2: Avaldiste väärtustamine (koos jagamisega)

6

• Aritmeetiliste avaldiste väärtustamine (koos jagamisega)

• Väljund

eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Loeng15b> eval1 exp3
6

• Näited

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

Viga, mida ei saa edasi töödelda!
(Error, mitte Exception)

 Integral Integer where
 div x y
 = case y == 0 of
 False => prim__div_Integer x y

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

eval2 (Num i) = Some i

Näide 3: Avaldiste väärtustamine (koos eranditega)

7

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

eval2 (Num i) = Some i

eval2 (e1 :+: e2) = case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) = ...
eval2 (e1 :*: e2) = ...
eval2 (e1 :/: e2) = ...

Näide 3: Avaldiste väärtustamine (koos eranditega)

8

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

...

Näide 3: Avaldiste väärtustamine (koos eranditega)

8

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

...

eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => if v2 == 0
 then None
 else Some (v1 `div` v2)

Näide 3: Avaldiste väärtustamine (koos eranditega)

8

• Aritmeetiliste avaldiste väärtustamine (koos jagamise ja eranditega)

eval2 : Expr -> Option Int

• Osaliste väärtuste andmetüüp (isomorfne Maybe andmetüübiga standardteegis)

data Option a = None
 | Some a

...

eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => if v2 == 0
 then None
 else Some (v1 `div` v2)

exp3 : Expr
exp3 = Num 4 :*: Num 3 :/: Num 2

Loeng15b> eval2 exp3
Some 6

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval2 exp4
None

Palju koodi duplitseerimist

9

Palju koodi duplitseerimist

9

• Ilma eranditeta väärtustaja
eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

Palju koodi duplitseerimist

9

• Ilma eranditeta väärtustaja • Eranditega väärtustaja
eval1 : Expr -> Int

eval1 (Num i) = i

eval1 (e1 :+: e2) = eval1 e1 + eval1 e2
eval1 (e1 :-: e2) = eval1 e1 - eval1 e2
eval1 (e1 :*: e2) = eval1 e1 * eval1 e2
eval1 (e1 :/: e2) = eval1 e1 `div` eval1 e2

eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

• kui üks ebaõnnestub, siis ebaõnnestub
kogu avaldise väärtustamine

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

• kui üks ebaõnnestub, siis ebaõnnestub
kogu avaldise väärtustamine

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

• kui üks ebaõnnestub, siis ebaõnnestub
kogu avaldise väärtustamine

• õnnestumise korral antakse tulemus
edasi järgnevale arvutusele

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

• kui üks ebaõnnestub, siis ebaõnnestub
kogu avaldise väärtustamine

• õnnestumise korral antakse tulemus
edasi järgnevale arvutusele

Samas palju sarnaseid korduvaid mustreid

10

• Eranditega väärtustaja
eval2 : Expr -> Option Int

eval2 (Num i) = Some i

eval2 (e1 :+: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 + v2)
eval2 (e1 :-: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 - v2)
eval2 (e1 :*: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 => Some (v1 * v2)
eval2 (e1 :/: e2) =
 case eval2 e1 of
 None => None
 Some v1 => case eval2 e2 of
 None => None
 Some v2 =>
 if v2 == 0 then None else Some (v1 `div` v2)

• Korduvad mustrid:

• väärtuse tagastamine ilma erandita

• alamavaldiste väärtustamine
toimub järjestikku

• kui üks ebaõnnestub, siis ebaõnnestub
kogu avaldise väärtustamine

• õnnestumise korral antakse tulemus
edasi järgnevale arvutusele

• vajadusel erandi tõstatamine

Korduvad mustrid abstraktsemalt

11

Korduvad mustrid abstraktsemalt

11

• Väärtuse tagastamine ilma erandit tõstatamata

oReturn : a -> Option a
oReturn x = Some x

Korduvad mustrid abstraktsemalt

11

• Väärtuse tagastamine ilma erandit tõstatamata

oReturn : a -> Option a
oReturn x = Some x

• Eranditega arvutuste järjestikku jooksutamine

oBind : Option a -> (a -> Option b) -> Option b

oBind comp f = case comp of
 None => None
 Some x => f x

Korduvad mustrid abstraktsemalt

11

• Väärtuse tagastamine ilma erandit tõstatamata

oReturn : a -> Option a
oReturn x = Some x

• Eranditega arvutuste järjestikku jooksutamine

oBind : Option a -> (a -> Option b) -> Option b

oBind comp f = case comp of
 None => None
 Some x => f x

• Vajadusel erandi tõstatamine

oThrow : Option a
oThrow = None

Näide 3: Avaldiste väärtustamine (abstraktsemalt)

12

oReturn : a -> Option a

oBind : Option a -> (a -> Option b) -> Option b

oThrow : Option a

Näide 3: Avaldiste väärtustamine (abstraktsemalt)

12

eval3 : Expr -> Option Int

eval3 (Num i) = oReturn i

eval3 (e1 :+: e2) = eval3 e1 `oBind` \ v1 =>
 eval3 e2 `oBind` \ v2 =>
 oReturn (v1 + v2)

eval3 (e1 :-: e2) = eval3 e1 `oBind` \ v1 =>
 eval3 e2 `oBind` \ v2 =>
 oReturn (v1 - v2)

eval3 (e1 :*: e2) = eval3 e1 `oBind` \ v1 =>
 eval3 e2 `oBind` \ v2 =>
 oReturn (v1 * v2)

eval3 (e1 :/: e2) = eval3 e1 `oBind` \ v1 =>
 eval3 e2 `oBind` \ v2 =>
 if v2 == 0 then oThrow else oReturn (v1 `div` v2)

oReturn : a -> Option a

oBind : Option a -> (a -> Option b) -> Option b

oThrow : Option a

Option tüüp on monaad!

13

Option tüüp on monaad!

13

• Option tüüp kirjeldab potentsiaalselt erandeid tõstatavaid arvutusi

• kus saab ilma erandita väärtusi tagastada (oReturn)

• mida saab järjestikku käivitada (oBind)

• kus saab vajadusel erandit tõstatada (oThrow)

Option tüüp on monaad!

13

• Option tüüp kirjeldab potentsiaalselt erandeid tõstatavaid arvutusi

• kus saab ilma erandita väärtusi tagastada (oReturn)

• mida saab järjestikku käivitada (oBind)

• kus saab vajadusel erandit tõstatada (oThrow)

• Monaadid kirjeldavad üldisemalt arvutusi

• kus saab väärtusi tagastada (return)

• mida saab järjestikku käivitada (bind)

• kus võib saada käivitada spetsiifilisi operatsioone

Monaadid

14

Monaadid

14

• Monaadid üldiselt (Idrise tüübiklassina)

interface Monaad (0 m : Type -> Type) where
 return : a -> m a
 bind : m a -> (a -> m b) -> m b (>>= ja do-notatsioonid)

Monaadid

14

• Monaadid üldiselt (Idrise tüübiklassina)

interface Monaad (0 m : Type -> Type) where
 return : a -> m a
 bind : m a -> (a -> m b) -> m b (>>= ja do-notatsioonid)

+ võrduslikud seadused returni ja bindi kohta (mida FP keeltes tihti ei kontrollita)
• (return x) >>= f ≈ f x

• c >>= (\ x => return x) ≈ c

• (c >>= f) >>= g ≈ c >>= (\ x => (f x) >>= g)

Monaadid

14

• Monaadid üldiselt (Idrise tüübiklassina)

interface Monaad (0 m : Type -> Type) where
 return : a -> m a
 bind : m a -> (a -> m b) -> m b (>>= ja do-notatsioonid)

+ võrduslikud seadused returni ja bindi kohta (mida FP keeltes tihti ei kontrollita)
• (return x) >>= f ≈ f x

• c >>= (\ x => return x) ≈ c

• (c >>= f) >>= g ≈ c >>= (\ x => (f x) >>= g)

• Option monaad eranditega programmeerimiseks
Monaad Option where
 return = oReturn
 bind = oBind

Monaadid Idrises

15

Monaadid Idrises

15

• Idrises on ka sisseehitatud monaadide tüübiklass

interface Functor f where
 map : (a -> b) -> f a -> f b

interface Functor f => Applicative f where
 pure : a -> f a
 (<*>) : f (a -> b) -> f a -> f b

interface Applicative m => Monad m where
 (>>=) : m a -> (a -> m b) -> m b

Monaadid Idrises

15

• Idrises on ka sisseehitatud monaadide tüübiklass

interface Functor f where
 map : (a -> b) -> f a -> f b

interface Functor f => Applicative f where
 pure : a -> f a
 (<*>) : f (a -> b) -> f a -> f b

interface Applicative m => Monad m where
 (>>=) : m a -> (a -> m b) -> m b

sisseehitatud monaadide tüübiklass

Monaadid Idrises

15

• Idrises on ka sisseehitatud monaadide tüübiklass

interface Functor f where
 map : (a -> b) -> f a -> f b

interface Functor f => Applicative f where
 pure : a -> f a
 (<*>) : f (a -> b) -> f a -> f b

interface Applicative m => Monad m where
 (>>=) : m a -> (a -> m b) -> m b

• Niimoodi mitmekihiliselt monaadide konstrueerimine on tihti liiga kohmakas!

sisseehitatud monaadide tüübiklass

Monaadid Idrises

15

• Idrises on ka sisseehitatud monaadide tüübiklass

interface Functor f where
 map : (a -> b) -> f a -> f b

interface Functor f => Applicative f where
 pure : a -> f a
 (<*>) : f (a -> b) -> f a -> f b

interface Applicative m => Monad m where
 (>>=) : m a -> (a -> m b) -> m b

• Niimoodi mitmekihiliselt monaadide konstrueerimine on tihti liiga kohmakas!

• Selle nädala (boonus)ülesannetes defineerime monaadid oma tüübiklassi abil
Monaad m => Functor m where ...
Monaad m => Applicative m where ...
Monaad m => Monad m where ...

sisseehitatud monaadide tüübiklass

interface Monaad (0 m : Type -> Type) where
 return : a -> m a
 bind : m a -> (a -> m b) -> m b

Näide 3: Avaldiste väärtustamine (do-notatsiooniga)

16

Näide 3: Avaldiste väärtustamine (do-notatsiooniga)

16

• Kuna

• näitasime, et Option on Monaad

• iga Monaad on Monad

• iga Monad'i puhul saame
kasutada do-notatsiooni!

• täpselt nagu IO programmides

Näide 3: Avaldiste väärtustamine (do-notatsiooniga)

16

eval4 : Expr -> Option Int

eval4 (Num i) = return i

eval4 (e1 :+: e2) = do
 v1 <- eval4 e1
 v2 <- eval4 e2
 return (v1 + v2)

eval4 (e1 :-: e2) = do
 v1 <- eval4 e1
 v2 <- eval4 e2
 return (v1 - v2)

eval4 (e1 :*: e2) = do
 v1 <- eval4 e1
 v2 <- eval4 e2
 return (v1 * v2)

eval4 (e1 :/: e2) = do
 v1 <- eval4 e1
 v2 <- eval4 e2
 if v2 == 0 then throw else return (v1 `div` v2)

• Kuna

• näitasime, et Option on Monaad

• iga Monaad on Monad

• iga Monad'i puhul saame
kasutada do-notatsiooni!

• täpselt nagu IO programmides

Vigade töötlemine

17

Vigade töötlemine

17

• Saame modelleerida ka Java/Pythoni-stiilis erandite töötlemist

tryCatch : Option a -> Option a -> Option a

tryCatch comp excHandler = case comp of
 None => excHandler
 Some x => return x

Vigade töötlemine

17

• Saame modelleerida ka Java/Pythoni-stiilis erandite töötlemist

tryCatch : Option a -> Option a -> Option a

tryCatch comp excHandler = case comp of
 None => excHandler
 Some x => return x

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval2 exp4
None

Loeng15b> tryCatch (eval2 exp4) (return 42)
Some 42

• Näiteks

Vigade töötlemine

17

• Saame modelleerida ka Java/Pythoni-stiilis erandite töötlemist

tryCatch : Option a -> Option a -> Option a

tryCatch comp excHandler = case comp of
 None => excHandler
 Some x => return x

exp4 : Expr
exp4 = Num 4 :*: Num 3 :/: (Num 2 :-: Num 2)

Loeng15b> eval2 exp4
None

Loeng15b> tryCatch (eval2 exp4) (return 42)
Some 42

• Näiteks

Option on erijuht rohkemate eranditega monaadist

data Exc e a = MkExc (Either e a)

eReturn : a -> Exc e a
eReturn x = MkExc (Right x)

eBind : Exc e a -> (a -> Exc e b) -> Exc e b
eBind comp f = case comp of
 MkExc (Left e) => MkExc (Left e)
 MkExc (Right x) => f x

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

18

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

18

• Vaatame jälle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

infixl 10 :+:, :-:
infixl 11 :*:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

18

• Vaatame jälle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

• Eesmärk: defineerida väärtustaja, mis tagastab **ka** väärtustatud avaldiste arvu

• lihtne näide arvutuste/programmide instrumenteerimisest

• teised sarnased näited: tegevuste logimine, autentimine, dünaamiline verifitseerimine

infixl 10 :+:, :-:
infixl 11 :*:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

18

• Vaatame jälle ilma jagamiseta (ilma eranditeta) aritmeetilisi avaldisi

• Eesmärk: defineerida väärtustaja, mis tagastab **ka** väärtustatud avaldiste arvu

• lihtne näide arvutuste/programmide instrumenteerimisest

• teised sarnased näited: tegevuste logimine, autentimine, dünaamiline verifitseerimine

infixl 10 :+:, :-:
infixl 11 :*:

data Expr = Num Int
 | (:+:) Expr Expr
 | (:-:) Expr Expr
 | (:*:) Expr Expr

• Näitame, et selline väärtustamine on ka näide monaadilistest arvutustest!

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

19

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

19

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

Counter = Int

eval1 : Expr -> (Int,Counter)

eval1 (Num i) = (i,0)

eval1 (e1 :+: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 + v2 , c1 + c2 + 1)

eval1 (e1 :-: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 - v2 , c1 + c2 + 1)

eval1 (e1 :*: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 * v2 , c1 + c2 + 1)

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

19

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

Counter = Int

eval1 : Expr -> (Int,Counter)

eval1 (Num i) = (i,0)

eval1 (e1 :+: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 + v2 , c1 + c2 + 1)

eval1 (e1 :-: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 - v2 , c1 + c2 + 1)

eval1 (e1 :*: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 * v2 , c1 + c2 + 1)

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

19

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

Counter = Int

eval1 : Expr -> (Int,Counter)
exp1 : Expr
exp1 = Num 1 :+: Num 2

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Loeng15c> eval1 exp1
(3, 1)

Loeng15c> eval1 exp2
(6, 2)

eval1 (Num i) = (i,0)

eval1 (e1 :+: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 + v2 , c1 + c2 + 1)

eval1 (e1 :-: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 - v2 , c1 + c2 + 1)

eval1 (e1 :*: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 * v2 , c1 + c2 + 1)

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

19

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

Counter = Int

eval1 : Expr -> (Int,Counter)

Näide 4: Avaldiste väärtustamine (instrumenteeritult)

20

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

Counter = Int

eval1 : Expr -> (Int,Counter)

eval1 (Num i) = (i,0)

eval1 (e1 :+: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 + v2 , c1 + c2 + 1)

eval1 (e1 :-: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 - v2 , c1 + c2 + 1)

eval1 (e1 :*: e2) = case eval1 e1 of
 (v1,c1) => case eval1 e2 of
 (v2,c2) => (v1 * v2 , c1 + c2 + 1)

• Samasugused korduvad mustrid nagu varem:

• väärtuste tagastamine

• arvutuste järjestikku käivitamine

• instrumenteerimine (loendurile +1 tegemine)

Korduvad mustrid instrumenteerimisel

21

Korduvad mustrid instrumenteerimisel

21

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste järjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a -> (a -> Ctr b) -> Ctr b
cBind comp f = case comp of
 MkCtr (x,c1) => case (f x) of
 MkCtr (y,c2) => MkCtr (y , c1 + c2)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste järjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a -> (a -> Ctr b) -> Ctr b
cBind comp f = case comp of
 MkCtr (x,c1) => case (f x) of
 MkCtr (y,c2) => MkCtr (y , c1 + c2)

• Avaldiste väärtustamise arvu loendamine (loendur on 1)

cCount : Ctr ()
cCount = MkCtr ((), 1)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste järjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a -> (a -> Ctr b) -> Ctr b
cBind comp f = case comp of
 MkCtr (x,c1) => case (f x) of
 MkCtr (y,c2) => MkCtr (y , c1 + c2)

• Avaldiste väärtustamise arvu loendamine (loendur on 1)

cCount : Ctr ()
cCount = MkCtr ((), 1)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Monaad Ctr where
 return = cReturn
 bind = cBind

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste järjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a -> (a -> Ctr b) -> Ctr b
cBind comp f = case comp of
 MkCtr (x,c1) => case (f x) of
 MkCtr (y,c2) => MkCtr (y , c1 + c2)

• Avaldiste väärtustamise arvu loendamine (loendur on 1)

cCount : Ctr ()
cCount = MkCtr ((), 1)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Monaad Ctr where
 return = cReturn
 bind = cBind

Counter ei pea olema ainult Int

Võib parametriseerida suvalise Monoid-iga

 interface Semigroup ty where
 (<+>) : ty -> ty -> ty

 interface Semigroup ty => Monoid ty where
 neutral : ty

Saame nn üldise kirjutajamonaadi
(vt Idrise koodi)

Korduvad mustrid instrumenteerimisel

21

• Väärtuse tagastamine ilma avaldisi väärtustamata (loendur on 0)

cReturn : a -> Ctr a
cReturn x = MkCtr (x,0)

• Instrumenteeritud arvutuste järjestikku jooksutamine (loendurid liidetakse)

cBind : Ctr a -> (a -> Ctr b) -> Ctr b
cBind comp f = case comp of
 MkCtr (x,c1) => case (f x) of
 MkCtr (y,c2) => MkCtr (y , c1 + c2)

• Avaldiste väärtustamise arvu loendamine (loendur on 1)

cCount : Ctr ()
cCount = MkCtr ((), 1)

• Instrumenteeritud arvutuste tüüp

data Ctr a = MkCtr (a,Counter)

Monaad Ctr where
 return = cReturn
 bind = cBind

Näide 4: Avaldiste väärtustamine (do-notatsiooniga)

22

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

eval3 : Expr -> Ctr Int

eval3 (Num i) = return i

eval3 (e1 :+: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 + v2)

eval3 (e1 :-: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 - v2)

eval3 (e1 :*: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 * v2)

Näide 4: Avaldiste väärtustamine (do-notatsiooniga)

22

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

eval3 : Expr -> Ctr Int

eval3 (Num i) = return i

eval3 (e1 :+: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 + v2)

eval3 (e1 :-: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 - v2)

eval3 (e1 :*: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 * v2)

avaldise väärtustamise loendamine

avaldise väärtustamise loendamine

avaldise väärtustamise loendamine

Näide 4: Avaldiste väärtustamine (do-notatsiooniga)

22

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

eval3 : Expr -> Ctr Int

eval3 (Num i) = return i

eval3 (e1 :+: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 + v2)

eval3 (e1 :-: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 - v2)

eval3 (e1 :*: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 * v2)

Näide 4: Avaldiste väärtustamine (do-notatsiooniga)

22

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

eval3 : Expr -> Ctr Int

eval3 (Num i) = return i

eval3 (e1 :+: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 + v2)

eval3 (e1 :-: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 - v2)

eval3 (e1 :*: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 * v2)

exp1 : Expr
exp1 = Num 1 :+: Num 2

Loeng15c> eval3 exp1
MkCtr (3, 1)

exp2 : Expr
exp2 = Num 2 :*: (Num 4 :-: Num 1)

Loeng15c> eval3 exp2
MkCtr (6, 2)

Näide 4: Avaldiste väärtustamine (do-notatsiooniga)

22

• Aritmeetiliste avaldiste väärtustamine (instrumenteeritult)

eval3 : Expr -> Ctr Int

eval3 (Num i) = return i

eval3 (e1 :+: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 + v2)

eval3 (e1 :-: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 - v2)

eval3 (e1 :*: e2) = do
 v1 <- eval3 e1
 v2 <- eval3 e2
 count
 return (v1 * v2)

Näide 5: Muudetavad muutujad (nagu Javas, ...)

23

Näide 5: Muudetavad muutujad (nagu Javas, ...)

23

• Idrise programmides esinevad muutujad pole muudetavad ega ülekirjutatavad

Näide 5: Muudetavad muutujad (nagu Javas, ...)

23

• Idrise programmides esinevad muutujad pole muudetavad ega ülekirjutatavad

• Seetõttu ei saa me Idrises järgmisel kujul olevaid programme esitada

Näide 5: Muudetavad muutujad (nagu Javas, ...)

23

• Idrise programmides esinevad muutujad pole muudetavad ega ülekirjutatavad

• Seetõttu ei saa me Idrises järgmisel kujul olevaid programme esitada

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {
 x = x + i;
 y = x + j;
 x = 42;
 return z
}

Näide 5: Muudetavad muutujad (nagu Javas, ...)

23

• Idrise programmides esinevad muutujad pole muudetavad ega ülekirjutatavad

• Seetõttu ei saa me Idrises järgmisel kujul olevaid programme esitada

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {
 x = x + i;
 y = x + j;
 x = 42;
 return z
}

• Probleemiks on Idrise funktsioonide puhtus ning mälu mittekasutamine

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

• Näitame, et muudetavaid muutujaid saab monaadiga modelleerida

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

• Näitame, et muudetavaid muutujaid saab monaadiga modelleerida

• Selle jaoks vaatleme funktsioonide f : a -> b asemel funktsioone f : a -> St b

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

• Näitame, et muudetavaid muutujaid saab monaadiga modelleerida

• Selle jaoks vaatleme funktsioonide f : a -> b asemel funktsioone f : a -> St b

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

• Näitame, et muudetavaid muutujaid saab monaadiga modelleerida

• Selle jaoks vaatleme funktsioonide f : a -> b asemel funktsioone f : a -> St b

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

data Vars = X | Y | Z

State : Type
State = Vars -> Int

lookup : Vars -> State -> Int
lookup x s = s x

update : Vars -> Int -> State -> State
update x i s y = if x == y then i else s y

Näide 5: Muudetavad muutujad (nagu Javas, ...)

24

• Näitame, et muudetavaid muutujaid saab monaadiga modelleerida

• Selle jaoks vaatleme funktsioonide f : a -> b asemel funktsioone f : a -> St b

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

data Vars = X | Y | Z

State : Type
State = Vars -> Int

lookup : Vars -> State -> Int
lookup x s = s x

update : Vars -> Int -> State -> State
update x i s y = if x == y then i else s y

• Funktsioonid f : a -> St b teisendavad algoleku lõppväärtuseks ja lõppolekuks

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

Monaad St where
 return = sReturn
 bind = sBind

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

Monaad St where
 return = sReturn
 bind = sBind

State ei pea olema ainult Vars -> Int

ST' : Type -> Type -> Type
ST' s a = s -> (a,s)

data ST : Type -> Type -> Type where
 MkST : ST' s a -> ST s a

stReturn : a -> ST s a
stReturn x = ...

stBind : ST s a -> (a -> ST s b) -> ST s b
stBind f g = ...

Näide 5: Muudetavad muutujad (nagu Javas, ...)

25

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

Monaad St where
 return = sReturn
 bind = sBind

Näide 5: Muudetavad muutujad (nagu Javas, ...)

26

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

Näide 5: Muudetavad muutujad (nagu Javas, ...)

26

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

prefix 8 ^!
(^!) : Vars -> St Int
(^!) x = MkSt (\ s => (lookup x s,s))

Näide 5: Muudetavad muutujad (nagu Javas, ...)

26

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

prefix 8 ^!
(^!) : Vars -> St Int
(^!) x = MkSt (\ s => (lookup x s,s))

infix 7 ^=
(^=) : Vars -> Int -> St ()
(^=) x i = MkSt (\ s => ((),update x i s))

Näide 5: Muudetavad muutujad (nagu Javas, ...)

26

St' : Type -> Type
St' a = State -> (a,State)

data St : Type -> Type where
 MkSt : St' a -> St a

sReturn : a -> St a
sReturn x = MkSt (\ s => (x,s))

sBind : St a -> (a -> St b) -> St b
sBind f g = MkSt (\ s => case f of
 MkSt f' => case f' s of
 (x,s') => case g x of
 MkSt g' => g' s')

prefix 8 ^!
(^!) : Vars -> St Int
(^!) x = MkSt (\ s => (lookup x s,s))

infix 7 ^=
(^=) : Vars -> Int -> St ()
(^=) x i = MkSt (\ s => ((),update x i s))

Need muutujate lugemise ja kirjutamise operatsioonid
on spetsiifilised olekumonaadile olekutüübiga Vars -> Int

Näide 5: Muudetavad muutujad (nagu Javas, ...)

27

Näide 5: Muudetavad muutujad (nagu Javas, ...)

27

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {

 x = x + i;

 y = x + j;

 x = 42;

 return z
}

• Java programm

Näide 5: Muudetavad muutujad (nagu Javas, ...)

27

prog1 : Int -> Int -> St Int

prog1 i j = do

 x <- ^! X
 X ^= x + i

 x' <- ^! X
 Y ^= x' + j

 X ^= 42

 ^! Z

• Java programm do-notatsiooniga

int x = 1;
int y = 2;
int z = 3;

int prog(int i, int j) {

 x = x + i;

 y = x + j;

 x = 42;

 return z
}

• Java programm

Näide 5: Muudetavad muutujad (nagu Javas, ...)

28

Näide 5: Muudetavad muutujad (nagu Javas, ...)

28

run : St a -> State -> (a,State)
run (MkSt f) s = f s

stateToList : State -> List Int
stateToList s = [s X , s Y , s Z]

runToList : St a -> State -> (a,List Int)
runToList f s = let (x,s') = run f s in (x, stateToList s')

• Muudetavate muutujatega programmide jooksutamiseks defineerime run funktsiooni

Näide 5: Muudetavad muutujad (nagu Javas, ...)

28

run : St a -> State -> (a,State)
run (MkSt f) s = f s

stateToList : State -> List Int
stateToList s = [s X , s Y , s Z]

runToList : St a -> State -> (a,List Int)
runToList f s = let (x,s') = run f s in (x, stateToList s')

• Muudetavate muutujatega programmide jooksutamiseks defineerime run funktsiooni

• Näiteks valime oma programmi muutujate algolekuks järgmise oleku

initialState : State
initialState X = 1
initialState Y = 2
initialState Z = 3

initialState : State
initialState X = 1
initialState Y = 2
initialState Z = 3

Näide 5: Muudetavad muutujad (nagu Javas, ...)

29

prog1 : Int -> Int -> St Int

prog1 i j = do

 x <- ^! X
 X ^= x + i

 x' <- ^! X
 Y ^= x' + j

 X ^= 42

 ^! Z

• Java programm do-notatsiooniga • Algolek

initialState : State
initialState X = 1
initialState Y = 2
initialState Z = 3

Näide 5: Muudetavad muutujad (nagu Javas, ...)

29

prog1 : Int -> Int -> St Int

prog1 i j = do

 x <- ^! X
 X ^= x + i

 x' <- ^! X
 Y ^= x' + j

 X ^= 42

 ^! Z

• Java programm do-notatsiooniga

Loeng15d> run (prog1 4 7) initialState
(3, update X 42 (update Y 12 (update X 5 initialState)))

Loeng15d> runToList (prog1 4 7) initialState
(3, [42, 12, 3])

Loeng15d> runToList (prog1 4 7) (\ _ => 0)
(0, [42, 11, 0])

• Algolek

Näide 6: Puhtad, efekti-vabad funktsioonid

30

Näide 6: Puhtad, efekti-vabad funktsioonid

30

• Puhtad funktsioonid on samuti näide monaadilistest arvutustest!

Näide 6: Puhtad, efekti-vabad funktsioonid

30

data Id a = MkId a

iReturn : a -> Id a
iReturn x = MkId x

iBind : Id a -> (a -> Id b) -> Id b
iBind (MkId x') f = f x'

Monaad Id where
 return = iReturn
 bind = iBind

• Puhtad funktsioonid on samuti näide monaadilistest arvutustest!

Näide 6: Puhtad, efekti-vabad funktsioonid

30

data Id a = MkId a

iReturn : a -> Id a
iReturn x = MkId x

iBind : Id a -> (a -> Id b) -> Id b
iBind (MkId x') f = f x'

Monaad Id where
 return = iReturn
 bind = iBind

• Puhtad funktsioonid on samuti näide monaadilistest arvutustest!

pureprog : Int -> Id Int -> Id Int

pureprog x y =
 return (x * !y + 7)

Näide 6: Puhtad, efekti-vabad funktsioonid

30

data Id a = MkId a

iReturn : a -> Id a
iReturn x = MkId x

iBind : Id a -> (a -> Id b) -> Id b
iBind (MkId x') f = f x'

Monaad Id where
 return = iReturn
 bind = iBind

• Puhtad funktsioonid on samuti näide monaadilistest arvutustest!

• Id a on isomorfne tüübiga a

i : Id a -> a
i (MkId x) = x

j : a -> Id a
j x = MkId x

pureprog : Int -> Id Int -> Id Int

pureprog x y =
 return (x * !y + 7)

Näide 6: Puhtad, efekti-vabad funktsioonid

30

data Id a = MkId a

iReturn : a -> Id a
iReturn x = MkId x

iBind : Id a -> (a -> Id b) -> Id b
iBind (MkId x') f = f x'

Monaad Id where
 return = iReturn
 bind = iBind

• Puhtad funktsioonid on samuti näide monaadilistest arvutustest!

• Id a on isomorfne tüübiga a

i : Id a -> a
i (MkId x) = x

j : a -> Id a
j x = MkId x

pureprog : Int -> Id Int -> Id Int

pureprog x y =
 return (x * !y + 7)

ij : (x : a) -> i (j x) = x
ij x = Refl

ji : (x : Id a) -> j (i x) = x
ji (MkId x) = Refl

Monaadid teistes programmeerimiskeeltes

31

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)
val incr : ref nat -> nat

let incr (r:ref nat) =
 r := !r + 1;
 !r

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)
val incr : ref nat -> nat

let incr (r:ref nat) =
 r := !r + 1;
 !r

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)
val incr : ref nat -> nat

let incr (r:ref nat) =
 r := !r + 1;
 !r

val incr_expl : ref nat-> St nat

let incr_expl (r:ref nat) =
 !r >>= \ v =>
 (v + 1) >>= \ w =>
 (r := w) >>= \ _ =>
 return w

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)

• Tõestamist toetavates keeltes imperatiivse koodi korrektsuse kontroll (FStar, Rocq, ...)

val incr : ref nat -> nat

let incr (r:ref nat) =
 r := !r + 1;
 !r

val incr_expl : ref nat-> St nat

let incr_expl (r:ref nat) =
 !r >>= \ v =>
 (v + 1) >>= \ w =>
 (r := w) >>= \ _ =>
 return w

Monaadid teistes programmeerimiskeeltes

31

• Algebralised efektid ja nende töötlejad (OCaml, Eff, Koka, Haskell, ...)

• Kõrvalefektide sisaldavate keelte tüübikontrollis ja semantikas (OCaml, ...)

• Tõestamist toetavates keeltes imperatiivse koodi korrektsuse kontroll (FStar, Rocq, ...)

val incr : ref nat -> nat

let incr (r:ref nat) =
 r := !r + 1;
 !r

val incr_expl : ref nat-> St nat

let incr_expl (r:ref nat) =
 !r >>= \ v =>
 (v + 1) >>= \ w =>
 (r := w) >>= \ _ =>
 return w

val incr : (r:ref nat)
 -> State nat (requires (\ s => live s r))

 (ensures (\ s v s' => lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

Monaadid programmeerimiskeeles FStar

32

Monaadid programmeerimiskeeles FStar

32

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

fn rec append (x y:llist 't) (l1 l2:erased (list 't))

requires is_list x l1 **
 is_list y l2 **
 pure (Some? x)

ensures is_list x (l1 @ l2)

{
 ...
}

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

fn rec append (x y:llist 't) (l1 l2:erased (list 't))

requires is_list x l1 **
 is_list y l2 **
 pure (Some? x)

ensures is_list x (l1 @ l2)

{
 ...
}

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

fn rec append (x y:llist 't) (l1 l2:erased (list 't))

requires is_list x l1 **
 is_list y l2 **
 pure (Some? x)

ensures is_list x (l1 @ l2)

{
 ...
}

Hoare logic

Monaadid programmeerimiskeeles FStar

32

val incr : (r:ref nat)
 -> State nat
 (requires (\ s => live s r))
 (ensures (\ s v s' =>

 lookup r s' == lookup r s + 1 /\
 v == lookup r s'))

fn rec append (x y:llist 't) (l1 l2:erased (list 't))

requires is_list x l1 **
 is_list y l2 **
 pure (Some? x)

ensures is_list x (l1 @ l2)

{
 ...
}

Hoare logic

Separation logic

Kokkuvõtteks

33

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

• Veel rohkem näiteid saab olemasolevate monaadide komponeerimisest

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

• Veel rohkem näiteid saab olemasolevate monaadide komponeerimisest

Mis edasi?

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

• Veel rohkem näiteid saab olemasolevate monaadide komponeerimisest

Mis edasi?

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

• Veel rohkem näiteid saab olemasolevate monaadide komponeerimisest

Mis edasi?

• Loogika Arvutiteaduses (LTAT.03.021, BSc, kevaditi)
• Curry-Howardi isomorphismi loogika-poolne osa
• erinevad loogika tuletus- ja tõestussüsteemid
• automaatse tõestamise elemente (resolutsioon)
• ajaloogikad (ajas muutuvate omaduste kontrollimine)
• modaalloogikad (mina tean, et sina tead, et tema teab, et ...)
• programmiloogikad (imperatiivsete programmide korrektsus)

Kokkuvõtteks

33

• Monaad = järjestikuste, kõrvalefekte sisaldavate programmide abstraktsioon

monaadid (f : Nat -> m Bool)

• Palju näiteid
• puhtad funktsioonid (f : Nat -> Id Bool)

• sisend-väljund (f : Nat -> IO Bool)

• erandid (f : Nat -> Option Bool)

• mälu kasutus (f : Nat -> St Bool)

• mittedeterminism (f : Nat -> List Bool)

• tõenäosused (f : Nat -> Dist Bool)

• termipuud (f : Nat -> Term Bool)

• ...

• Veel rohkem näiteid saab olemasolevate monaadide komponeerimisest

Mis edasi?

• Loogika Arvutiteaduses (LTAT.03.021, BSc, kevaditi)
• Curry-Howardi isomorphismi loogika-poolne osa
• erinevad loogika tuletus- ja tõestussüsteemid
• automaatse tõestamise elemente (resolutsioon)
• ajaloogikad (ajas muutuvate omaduste kontrollimine)
• modaalloogikad (mina tean, et sina tead, et tema teab, et ...)
• programmiloogikad (imperatiivsete programmide korrektsus)

• Programmeerimiskeelte Põhimõtted (LTAT.03.027, MSc, sügiseti)
• jätkab sealt, kus FP aine (teooriaosa) pooleli jääb
• arvutuslikud kõrvalefektid (ja muidugi ka monaadid)
• arvutuslike kõrvalefektide töötlejad (eranditöötlejad+++)
• alamtüüpimine, polümorfism, efekti-ja-tüübisüsteemid
• sõltuvate tüüpide teooria edasiarendusi
• lineaarsed ja modaalsed tüübid, programmiloogikad tüüpide sees

Aitäh kuulamast!

