Refinement Types for Algebraic Effects

Danel Ahman Gordon Plotkin
LFCS, University of Edinburgh

TYPES 2015
Tallinn
Today's plan

Value ref. types → Computation ref. types

Value types → Algebraic effects → Computation types

+ some examples
Refinement types

For extending base language’s type system

- to allow more precise specifications in types
 \[\vdash \text{Odd} : \text{Ref(Nat)} \quad \vdash \text{Even} : \text{Ref(Nat)} \]

- make it possible to internalize meta-theorems
 \[n : \text{Odd}, m : \text{Odd} \vdash n + m : \text{Even} \]

 and also program optimizations

In this talk, we discuss propositional ref. types

- for example Even and Odd, as above
 \[\text{[Freeman, Pfenning '91]} \]

Ideas also apply to FOL-based ref. types

- for example \(\{ x : \sigma \mid \varphi(x) \} \)

 but with some additional technical challenges
 \[\text{[Denney '98]} \]
Computational effects

- Ever-present in the various languages we work with
 - regardless of being lazy, strict, object-oriented, ...

- First unifying account using monads, e.g.: [Moggi ’89]
 - non-determinism: \(T X = P_{\text{fin}}^+(X) \)
 - read-only memory: \(T X = S \to X \)
 - write-only memory: \(T X = M \times X \) (\(M \) a monoid)
 - read-write memory / global state: \(T X = S \to (S \times X) \)

- And also more recent generalizations from TYPES ’13 [Ahman, Uustalu ’14]
 - update monads: \(T X = S \to (P \times X) \) (\(P \) a monoid)
 - dep. typed update monads: \(T X = \Pi s : S.(P s \times X) \)
 (where \((S, \downarrow, P, o, \oplus) \) a directed container)
Refinement types for computational effects

- Plenty of work in the literature that either
 - target particular computational effects, or
 - cover particular kinds of specifications

- For example:
 - pre- and postconditions \(\{P\} \sigma \{Q\} \) for state
 - Hoare Type Theory [Nanevski et. al. ’08]
 - Refined state monad in F7 [Borgström et. al. ’11]
 - Dijkstra Monad in F* [Swamy et. al. ’13]
 - sessions and protocols \(!\text{Bool}.?\text{Nat}.S \) for I/O
 - trace effects [Skalka, Smith, van Horn ’08]
 - session typed languages [Honda ’93] [and many others]
 - effect annotations \(\varepsilon \) in type-and-effect systems
 - sets of operation symbols [Kammar, Plotkin ’12]
 - ordered monoids [Katsumata ’14]
Computational effects, algebraically

- Take **algebraic theories** as a primitive, rather than the monads they generate \[\text{[Plotkin,Power ’02]}\]
 - in this talk: “standard” \(n \)-ary operations \(\text{op} : n \)
 - not in this talk: operations with parameters and binding

- For example:
 - **non-determinism**: \(T X = \mathcal{P}_{\text{fin}}^{+}(X) \)
 - \(x \text{ or } x = x \)
 - \(x \text{ or } y = y \text{ or } x \)
 - \(x \text{ or } (y \text{ or } z) = (x \text{ or } y) \text{ or } z \)
 - **state**: \(T X = 2 \rightarrow (2 \times X) \) \hspace{1cm} (where \(S = 2 \))
 - \(\text{lkp}(\text{upd}_0(x), \text{upd}_1(x)) = x \)
 - \(\text{upd}_i(\text{upd}_j(x)) = \text{upd}_j(x) \)
 - \(\text{upd}_i(\text{lkp}(x_0, x_1)) = \text{upd}_i(x_i) \)
Effectful programs as computation trees

- Algebraic modeling of effects is somewhat eyeopening
- Immediately allows to think of programs such as

\[
\begin{align*}
\text{let } f &= \lambda b : \text{bool} . \text{return } \neg b \text{ in} \\
\text{let } x &= \text{lkp} \text{ in} \\
\text{let } y &= f \times \text{in} \\
\text{let } _ &= \text{output } y \text{ in} \\
\text{let } _ &= \text{if } x = 1 \text{ then } \text{upd} y \text{ in} \\
\text{return } y
\end{align*}
\]

as computation trees

```
lkp

output₁

| 1

output₀

| upd₀

| 0
```
Ref. types for algebraic effects

- Reason about effectful programs as if they would simply be comp. trees built from operations

- Would like to build:
 - single trees from operations
 - combine them into finite and infinite sets of trees
 - with clean and finite syntax

- Define effect refinements, based on modal formulae
 \[\psi ::= [] | \langle \text{op} \rangle(\psi_1, \ldots, \psi_n) | \bot | \psi_1 \lor \psi_2 | X | \mu X.\psi \]

 - "holes" [] are placeholders for leaves
 - op. modalities \(\langle \text{op} \rangle \) are used to build trees from ops.

- Note: effect refs. are indifferent wrt. specific algebras
Ref. types for algebraic effects

- Think effect refinements as a small logic on comp. trees
 \[\psi ::= [] \mid \langle \text{op} \rangle(\psi_1, \ldots, \psi_n) \mid \bot \mid \psi_1 \lor \psi_2 \mid X \mid \mu X.\psi \]

- They also come with a satisfiability / subtyping relation
 \[\Delta \vdash \psi_1 \sqsubseteq \psi_2 \]

- \sqsubseteq \text{ includes standard logic}

- Also want \sqsubseteq \text{ to include algebraic properties of } \langle \text{op} \rangle \text{'s}
 - Can't just include all the axioms, e.g., \[\psi = \langle \text{lkp} \rangle(\psi, \psi) \]

 [Gautam '57]

- Need to include derivable semi-linear equations

 \[\vec{x} \vdash t = u \text{ derivable in } T_{\text{eff}} \quad t \text{ linear in } \vec{x} \quad Vars(u) \subseteq Vars(t) \]

 \[\Delta \vdash \psi_1 \quad \ldots \quad \Delta \vdash \psi_n \]

 \[\Delta \vdash t^\bullet[\vec{\psi}/\vec{x}] \sqsubseteq u^\bullet[\vec{\psi}/\vec{x}] \]
About the semantics of effect refinements

- Recall: effect refs. are **indifferent** wrt. specific algebras
- Concretely, they can be interpreted as **monotone maps**
 - $[[\Delta \vdash \psi]]_A : \mathcal{P}(UA) \times [[\Delta]]_A \rightarrow \mathcal{P}(UA)$
 (the first argument corresponds to holes $[]$)
- More abstractly, we interpret them as **functors** on fibres
 - $[[\Delta \vdash \psi]]_A : \text{RefAlg}_A \times [[\Delta]]_A \rightarrow \text{RefAlg}_A$

where RefAlg results from change-of-base situation in

```
\begin{array}{ccc}
\mathbb{R} & \xrightarrow{\hat{F}} & \text{RefAlg} \\
\downarrow r & \ & \downarrow \text{U}^*(r) \\
\mathbb{V} & \xleftarrow{\hat{U}} & \text{Alg} \\
\end{array}
```

- When $\vdash \psi$ then we have $[[\vdash \psi]] : \text{RefAlg} \rightarrow \text{RefAlg}$
Adding ref. types to effectful languages

- Fairly straightforward to add them to effectful languages, e.g., FGCBV or CBPV: [Levy et. al. ’03] [Levy ’04]

- For example, CBPV types
 - \(A ::= b \mid 1 \mid 0 \mid A_1 \times A_2 \mid A_1 + A_2 \mid UC \)
 - \(C ::= FA \mid 1 \mid C_1 \times C_2 \mid A \rightarrow C \)

 turn into ref. types inspired by effect refinements
 - \(\sigma ::= b \mid 1 \mid 0 \mid \sigma_1 \times \sigma_2 \mid \sigma_1 + \sigma_2 \mid \hat{U} \tau \mid \sigma_1 \lor \sigma_2 \mid \bot_A \)
 - \(\tau ::= \hat{F} \sigma \mid 1 \mid \tau_1 \times \tau_2 \mid \sigma \rightarrow \tau \mid \langle \text{op} \rangle_C(\tau_1, \ldots, \tau_n) \mid X \mid \mu X . \tau \mid \tau_1 \lor \tau_2 \mid \bot_C \)

- With the accompanying subtyping relations
 \(\Delta \models \sigma_1 \sqsubseteq_A \sigma_2 \quad \Delta \models \tau_1 \sqsubseteq_C \tau_2 \)

 extended with rules for subtyping effect refinements
Adding ref. types to effectful languages

- The term syntax is as in CBPV
 \[V ::= x \mid \langle V_1, V_2 \rangle \mid \ldots \]
 \[M ::= \text{return } V \mid M_1 \text{ to } x : \sigma \text{ in } M_2 \mid \ldots \]

- The typing judgments for CBPV become
 \[\Gamma \vdash V : \sigma \quad \Gamma \vdash M : \tau \]
 with the typing rules modified accordingly, e.g.:

 \[
 \frac{\Gamma \vdash \text{return } V : \hat{F} \sigma \quad \Gamma \vdash M_1 : \tau_1 \ldots \quad \Gamma \vdash M_n : \tau_n}{\Gamma \vdash \text{op}(M_1, \ldots, M_n) : \langle \text{op} \rangle_C(\tau_1, \ldots, \tau_n)}
 \]

 \[
 \frac{\Gamma \vdash M_1 : \psi[\hat{F} \sigma] \quad \Gamma, x : \sigma \vdash M_2 : \tau}{\Gamma \vdash M_1 \text{ to } x : \sigma \text{ in } M_2 : \psi[\tau]}
 \]

 where \(\psi[\tau] \) denotes “filling” of holes \([\]\) in \(\psi \) with \(\tau \)
About the semantics of ref. typed CBPV

- Recall the picture for interpreting effect refs.

```
\[
\begin{array}{c}
\mathbb{R} \\ \downarrow r \\
\Rightarrow \\
\downarrow \\
\mathbb{V}
\end{array}
\quad \hat{\mathcal{F}} \quad \Rightarrow \\
\mathbb{R} \quad \Rightarrow \\
\downarrow \hat{\mathcal{U}} \quad \Rightarrow \\
\downarrow \Rightarrow \\
\mathbb{V}
\]
```

- Assume \(r \) to have suitable structure for types

- Ref. typed CBPV interpreted in the total categories:

\[
\begin{align*}
\left[\vdash \sigma : \text{Ref}(A) \right] & \in \text{obj}(\mathbb{R}) \text{ such that } r([\sigma]) = [A] \\
\left[\vdash \tau : \text{Ref}(C) \right] & \in \text{obj}(\text{RefAlg}) \text{ such that } U^*(r)([\tau]) = [C]
\end{align*}
\]

\[
\begin{align*}
\left[\Gamma \vdash V : \sigma \right] : \left[\Gamma \rightarrow [\sigma] \\
\left[\Gamma \vdash M : \tau \right] : \left[\Gamma \rightarrow (\hat{U} \circ [\psi])([\tau]) \right]
\end{align*}
\]
Applications: Type-and-effect systems

- **Effect annotations** ε in effect-and-type systems usually consist of sets of operation / effect symbols.

- To represent type-and-effect systems in our system, we define **effect refinements** ψ_ε by

 \[
 \psi_\varepsilon \overset{\text{def}}{=} \mu X . [] \lor \bigvee_{\text{op}:n \in \varepsilon} \langle \text{op} \rangle(X, \ldots, X)
 \]

- So we can talk of effect-and-type judgements

 \[\Gamma \vdash M : \sigma ! \varepsilon\]

 as ref. typed judgements

 \[\Gamma \vDash_{\varepsilon} M : \psi_\varepsilon[\hat{F} \sigma]\]
Applications: Optimizations

- With a PER-based semantics also possible to validate effect-dependent optimizations
 [Benton et. al. ’06–’09] [Kammar, Plotkin ’12]

- For example:
 - **discard**

 \[t(x, \ldots, x) = x \text{ in } T_{\text{eff}} \text{ for all } \psi\text{-terms} \]

 \[
 \begin{align*}
 \Gamma \vdash c \ M : \psi[\hat{F} \sigma] & \quad \Gamma \vdash c \ N : T \\
 \hline
 \Gamma \vdash c \ M \text{ to } x : \sigma \text{ in } N &= N : \psi[T]
 \end{align*}
 \]

 - **copy**

 \[t(t(x_{11}, \ldots, x_{1n}), \ldots, t(x_{n1}, \ldots, x_{nn})) = t(x_{11}, \ldots, x_{nn}) \text{ for all } \psi\text{-terms} \]

 \[
 \begin{align*}
 \Gamma \vdash c \ M : \psi[\hat{F} \sigma] & \quad \Gamma, x : \sigma, y : \sigma \vdash c \ N : T \\
 \hline
 \Gamma \vdash c \ M \text{ to } x : \sigma \text{ in } (M \text{ to } y : \sigma \text{ in } N) &= M \text{ to } x : \sigma \text{ in } N[x/y] : \psi[T]
 \end{align*}
 \]
Applications: Optimizations

- But we can also validate more involved optimizations
 - effect refs. contain more temporal information
- **Dead code elimination** in stateful computation

\[
\Gamma \vdash c : \psi \left[\langle \text{upd}_l,0 \rangle([\tau]) \lor \langle \text{upd}_l,1 \rangle([\tau]) \right] \quad \langle \text{lkp}_l \rangle \not\in \psi \\
\Gamma \vdash c \text{upd}_l,i(M) = M : \langle \text{upd}_l,i \rangle \left(\psi \left[\langle \text{upd}_l,0 \rangle([\tau]) \lor \langle \text{upd}_l,1 \rangle([\tau]) \right] \right)
\]

- Plus various other patterns describing how write- and read-information propagates through the terms
Applications: Hoare Logic

- Pre- and post-conditions on state turn out to be yet another example of formulae on computation trees
- Lack of value parameters \Rightarrow combinatorial definition
- Take the predicates on state to be $P, Q \subseteq \{0, 1\}$
- Hoare refinement $\{P\} \sigma \{Q\}$ defined by case analysis on P

\[
\begin{align*}
\{\emptyset\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_i \langle \text{upd}_i \rangle ([\hat{F} \sigma]), \bigvee_j \langle \text{upd}_j \rangle ([\hat{F} \sigma])) \\
\{\{0\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma]), \bigvee_j \langle \text{upd}_j \rangle ([\hat{F} \sigma])) \\
\{\{1\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_i \langle \text{upd}_i \rangle ([\hat{F} \sigma]), \bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma])) \\
\{\{0, 1\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma]), \bigvee_{q'} \langle \text{upd}_{q'} \rangle ([\hat{F} \sigma]))
\end{align*}
\]

where $i, j \in \{0, 1\}$ and $q, q' \in Q$
Applications: Hoare Logic

- **Pre- and post-conditions on state** turn out to be yet another example of formulae on computation trees.
- Lack of value parameters \Rightarrow combinatorial definition
- Take the **predicates on state** to be $P, Q \subseteq \{0, 1\}$
- **Hoare refinement** $\{P\} \sigma \{Q\}$ defined by case analysis on P

\[
\begin{align*}
\{\emptyset\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_i \langle \text{upd}_i \rangle ([\hat{F} \sigma]), \bigvee_j \langle \text{upd}_j \rangle ([\hat{F} \sigma])) \\
\{\{0\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma]), \bigvee_j \langle \text{upd}_j \rangle ([\hat{F} \sigma])) \\
\{\{1\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_i \langle \text{upd}_i \rangle ([\hat{F} \sigma]), \bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma])) \\
\{\{0, 1\}\} \sigma \{Q\} & \overset{\text{def}}{=} \langle \text{lkp} \rangle (\bigvee_q \langle \text{upd}_q \rangle ([\hat{F} \sigma]), \bigvee_{q'} \langle \text{upd}_{q'} \rangle ([\hat{F} \sigma]))
\end{align*}
\]

where $i, j \in \{0, 1\}$ and $q, q' \in Q$
Applications: Hoare Logic

With the above def., Hoare Logic becomes admissible

\[\Gamma \vdash c \ M : \{ P \cap \{ 0 \} \} \sigma \{ Q \} \quad \Gamma \vdash c \ N : \{ P \cap \{ 1 \} \} \sigma \{ Q \} \]

\[\Gamma \vdash \text{lkp}(M, N) : \{ P \} \sigma \{ Q \} \]

\[\Gamma \vdash c \ \text{upd}_i(M) : \{ \bigvee_{P \cap \{ i \} \{ 0, 1 \}} \} \sigma \{ Q \} \quad (i \in \{ 0, 1 \}) \]

\[\Gamma \vdash c \ M : \{ P \} \sigma_1 \{ Q \} \quad \Gamma, x : \sigma_1 \vdash c \ N : \{ Q \} \sigma_2 \{ R \} \]

\[\Gamma \vdash c \ M \text{ to } x : \sigma_1 \text{ in } N : \{ P \} \sigma_2 \{ R \} \]

\[\Gamma \vdash c \ V : \sigma \]

\[\Gamma \vdash c \ \text{return } V : \{ P \} \sigma \{ P \} \]

\[P \subseteq P' \quad \Gamma \vdash c \ M : \{ P' \} \sigma \{ Q' \} \quad Q' \subseteq Q \]

\[\Gamma \vdash c \ M : \{ P \} \sigma \{ Q \} \]
Applications: Protocols and sessions

- Protocol and session specifications are yet another example of formulae on computation trees
- For example, the correct usage of files
- Using a file correctly once:

\[
\psi_{\text{file}} \overset{\text{def}}{=} \langle \text{open} \rangle \left(\mu X . \left(\langle \text{close} \rangle ([]) \lor \langle \text{write} \rangle_{i}(X) \lor \langle \text{read} \rangle(X, X) \right) \right)
\]

- Using a file correctly repetitively:

\[
\psi_{\text{rep-file}} \overset{\text{def}}{=} \mu Y . \left([] \lor \psi_{\text{file}}[Y] \right)
\]

- Finally, also straightforward to define session-type style refinements, e.g., I/O corresponding to the grammar

\[
S ::= !(0).S \mid !(1).S \mid !(0 \lor 1).S \mid ?(S_1, S_2) \mid \text{end}
\]
Conclusions

- In this talk:
 - Effect refs. as formulae on equiv. classes of comp. trees
 - Ref. types in computational languages (CBPV)
 - Importance of (semi-)linearity in equations
 - Specification and optimization examples

- Not in this talk:
 - Handlers (need ref. types to have free vars X)
 - Effect refs. for operations with parameters and binding
 - Type-dependency in ref. types over simple types