This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie grant agreement No 834146.

{@®\ This material is based upon work supported by the Air Force Office of Scientific Research
W4 under award number FA9550-17-1-0326.

DANEL AHMAN MATIJA PRETNAR
UNIVERSITY OF LJUBLJANA, SLOVENIA

ASYNCHRONOUS EFFECTS

[HE PROBLEM

THE SETTING WE WORK IN

THE SETTING WE WORK IN

» Effectful programming with algebraic effects and effect handlers

THE SETTING WE WORK IN

» Effectful programming with algebraic effects and effect handlers

M, N
H

op (V,y.M) |

. opikaMopi L

handle M with H

, returnx = N, }

THE SETTING WE WORK IN

» Effectful programming with algebraic effects and effect handlers
M,N = ... | op(V,y.M) | handle M with H

H == {...,opxk—>M, , ..., returnx — Ny, }

» Separates (operation-based) interfaces from (user-definable) implementations

THE SETTING WE WORK IN

» Effectful programming with algebraic effects and effect handlers
M,N = ... | op(V,y.M) | handle M with H

H == {...,opxk—>M, , ..., returnx — Ny, }

» Separates (operation-based) interfaces from (user-definable) implementations

handle (return V) with H w N__[V/x]

handle (op (V,y.M)) with H M, | Vix, (fun y — handle M with H)/k]

THE SETTING WE WORK IN

» Effectful programming with algebraic effects and effect handlers
M,N = ... | op(V,y.M) | handle M with H

H == {...,opxk—>M, , ..., returnx — Ny, }

» Separates (operation-based) interfaces from (user-definable) implementations

handle (return V) with H w N__[V/x]

handle (op (V,y.M)) with H M, | Vix, (fun y — handle M with H)/k]

» State, rollbacks, exceptions, non-determ., concurrency, prob. programming, ...

THE PROBLEM WITH ALGEBRAIC EFFECTS

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

.~ op(V,y.M)

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

Mop[V/x]

T
.~ op(V,y.M)

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

*x effect handler

M, | VIx]

* runner of alg. effects)

~ op (V,y.M)

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

*x effect handler

My [Vix] w* return W

* runner of alg. effects)

~ op (V,y.M)

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

*x effect handler

My [Vix] w* return W

* runner of alg. effects)

~ op (V,y.M)

“~— continuation is blocked until W is computed

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

My [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) MIW/iy] w

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) M|W/y]l w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) M|W/y]l w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) M|W/y]l w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

» Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

*x effect handler

M, [Vix] w* return W

* runner of alg. effects))

~ op (V,y.M) M|W/y]l w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

» Existing approaches to asynchrony simply delegate it to language backends

Multicore OCaml

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) M|W/y]l w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

» Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix] w* return W

*x effect handler

* runner of alg. effects))

~ op (V,y.M) MIW/iy] w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

» Existing approaches to asynchrony simply delegate it to language backends

This paper: How to capture asynchrony in a self-contained core language?

THE 1DEA

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

Mop[V/x] wy K return W
T !

.~ op(V,y.M) MIW/y] w ...

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS ~ executing op's imp.

Mopl V1 o return W

.~ op(V,y.M) M[W/y]

signalling to execute
7 7 interrupting M'’s blocking

some impl. of op _

» Execution of algebraic operation calls has three distinct phases

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS ~ executing op's imp.

M, [V/x] w> trn %%
. W 0Op (V,y.M) M[W/y] .

signalling to execute . . , .
interrupting M'’s blocking

some impl. of op _

» Execution of algebraic operation calls has three distinct phases

» ldea: Decouple all three phases into separate programming constructs, so that

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS ~ executing op's imp.

el My [Vix] return W

.~ op(V,y.M) M|W/y]l w

interrupting M's blocking

some impl. of op _

» Execution of algebraic operation calls has three distinct phases

» ldea: Decouple all three phases into separate programming constructs, so that

» M would not block while (2) happens asynchronously,
» programmers could choose if/when to block M for (3) to happen, and

» (3) could happen without originating from (1)

[HE APPROACH

THE SIGNALS

THE SIGNALS

» Our computations can issue outgoing signals

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

THE SIGNALS

signal name

» Our computations can issue outgoing signals |

M,N = ... | TP (V, M)

THE SIGNALS

signal name

» Our computations can issue outgoing signals |

M,N = ... | \ (V, M)

THE SIGNALS

signal name

- : . . _—— payload
» Our computations can issue outgoing signals

MN = ... | 1 Op (V, Conpuatlon

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)
» propagate outwards (T-notation)

et x = (1 op(V,M)) inN
w 1 op (V,(let x =M in N))

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

~ T op (V,M)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~ T op (V,M)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V.M) -» M

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V.M) w» M w

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V.M) w» M w

» Example: scrolling through a seemingly infinite feed

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V.M) w» M w

» Example: scrolling through a seemingly infinite feed

T request (cachedSize + 1, Msoyciiont)

THE SIGNALS

» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V,M) w M

» Example: scrolling through a seemingly infinite feed

T request (cachedSize + 1, Msoyciiont) T display (message, M:..qciient)

THE INTERRUPTS

THE INTERRUPTS

» Our computations can be interrupted

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

THE INTERRUPTS

_ interrupt name

» Our computations can be interrupted

M,N = ... | l (W, M)

THE INTERRUPTS

_ interrupt name

» Our computations can be interrupted

M,N = ... | l (W, M)

THE INTERRUPTS

_ interrupt name

—— payload
» Our computations can be interrupted .

M,N .= ... | l O (W, “ conpuatlon

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)
» propagate inwards (! -notation)

Lop (W, 1 op’ (V,M))
~ 1 op’ (V, | op (W,M))

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)
» propagate inwards (! -notation)

Lop (W, 1 op’ (V,M))
~ 1 op’ (V, | op (W,M))

L op (W, return V)

~ returnV

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)

» do not block their continuation

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

lopW

w M

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

lopW

~w M w | op(W,M)

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

lopW

~w» M w |op(W,M) w

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

» Example: scrolling through a seemingly infinite feed

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

» Example: scrolling through a seemingly infinite feed

| response (newBatch, M ycpent)

THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

» Example: scrolling through a seemingly infinite feed

| response (newBatch, M ycpent) | nextItem ((), M:..qciient)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (T requeSt (Va MfeedCIient)) ‘ ‘ run MfeedServer

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T request (V9 run MfeedCIient) ‘ ‘ run MfeedServer

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ 1 request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ ! request (V,run MfeedServer))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ ! request (V,run MfeedServer))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

~ | request (V, run Meooycrient || TUN (| request (V, Me..yserver)))

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T requeSt (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

~ | request (V, run Meooycrient || TUN (| request (V, Me..yserver)))

» Butinterrupts can also appear spontaneously!

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T request (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

~ | request (V, run Meooycrient || TUN (| request (V, Me..yserver)))

» Butinterrupts can also appear spontaneously!

» e.g. the user clicking a button or the environment preempting a process

THE INTERRUPT HANDLERS

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

M,N ::= ... | promise(opx —» M)aspinN

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

M,N ::= ... | promise(opx —» M)aspinN

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

M,N ::= ... | promise(opx —» M)aspinN

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

continuation

M,N = ... | promise (opx = M)asp in

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers

M,N ::= ... | promise(opx —» M)aspinN

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN

» propagate outwards

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN

» propagate outwards

let y = (promise (opx = M) aspin Mz) in N
w promise (opx +— M) as p In (Iet x =M, in N)

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN

» propagate outwards

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards

» triggered by matching interrupts

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards

» triggered by matching interrupts
1 op (V, promise (opx — M) as p In N)
w let p = M|V/x] in | op (V,N)

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards

» triggered by matching interrupts

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards

» triggered by matching interrupts

» not triggered by non-matching interrupts

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts

» not triggered by non-matching interrupts

1 op (V, promise (op’ x — M) as p In N) ,
. , . (op # op’)
w promise (op’x —» M)aspin | op (V,N)

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards

» triggered by matching interrupts

» not triggered by non-matching interrupts

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts
» not triggered by non-matching interrupts

» do not block their continuation

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts
» not triggered by non-matching interrupts

» do not block their continuation

N w» N’

promise (opx — M) as pin N w promise (opx — M)aspin N’

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts

» not triggered by non-matching interrupts

——— execution of open terms

» do not block their continuation

N ~» N’

promise (opx — M) as pin N w promise (opx — M)aspin N’

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts

» not triggered by non-matching interrupts

——— execution of open terms

» do not block their continuation

N ~» N’

promise (opx — M) as pin N w promise (opx — M)aspin N’

THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts

» not triggered by non-matching interrupts

——— execution of open terms

» do not block their continuation

romise types ensure type safety! 7
NwN P YP yp y

promise (opx — M) as pin N w promise (opx — M)aspin N’

THE AWAITING

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | await Vuntil(x)inN

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | await Vuntil(x)inN

promise-typed value —__—" B

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

oromise-typed value —__—"

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —__—" B

» reduces when provided a fulfilled promise

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —__—" B

» reduces when provided a fulfilled promise

await (V) until (x) in N
~ N|V/x]

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —__—" B

» reduces when provided a fulfilled promise

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

await p until {(x) in N

THE AWAITING

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise_typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

1 op-sig (V, promise (op-int x — return{x)) as p in (await p until {y) in M))

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise-typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

» and the implementations of op in parallel processes as follows

THE AWAITING Example: client blocks until server sends its batch size.

» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise_typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

» and the implementations of op in parallel processes as follows

promise (op-sig x +— (M,,)) as p in (awaitp until {(y) in T op-int (y, return ()))

THE RUNNING EXAMPLE

let client () =
T batchSizeRequest ();

promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch
cachedData :=!cachedData @ newBatch:

requestinProgress := false; return (())
) as _in return ()
In

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then

requestNewData (cachedSize + 1)
else

return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));

currentltem :=!currentltem + 1
else

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () =
| batchSizeRequest ();
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in {\

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData :=!cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)
else
return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1
else
T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

=

await batchSizePromise until (batchSize) in clientLoop batchSize <,

let client () =
T batchSizeRequest ();

promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch
cachedData :=!cachedData @ newBatch:

requestinProgress := false; return (())
) as _in return ()
In

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then

requestNewData (cachedSize + 1)
else

return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));

currentltem :=!currentltem + 1
else

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () =
T batchSizeRequest ();
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData :=!cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
In

let rec clientLoop batchSize =
promise (nextltem () +—
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not 'requestinProgress) then <&,
requestNewData (cachedSize + 1) |
else
return ()):
(if lcurrentltem < cachedSize then
[display (toString (nth !cachedData !currentltem));
currentltem := !currentltem + 1
else
[display
clientLoop batchSize
) as p In return p

In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () =
T batchSizeRequest ();

promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch
cachedData :=!cachedData @ newBatch:

requestinProgress := false; return (())
) as _in return ()
In

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then

requestNewData (cachedSize + 1)
else

return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));

currentltem :=!currentltem + 1
else

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData := !cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)
else
return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1
else
T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
| batchSizeRequest (); let rec waitForBatchSize ()
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () -
| batchSizeResponse batchSize:

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as P In return P
let requestNewData offset = in
requestInProgress := true; let rec waitForRequest ()

| request offset: promise (request offset — |
F”'“mi;“(;"CSPUHSC HC\}:{;&M}] =] let payload = map (fun x — 10 = x) (range offset (offset + batchSize - 1)) in &
cachedData := !cachedData @ newBatch:; ! response payload:
requestinProgress := false; return (()) waitForRequest ()
) as _in return ()) as p in return p
in in
waitForBatchSize (); waitForRequest ()
let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)
else
return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1
else
T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
in

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData := !cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —
let cachedSize = length !cachedData in
(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)
else
return ());
(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1
else
T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData := !cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () +—

let cachedSize = length !cachedData in

(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)

else
return ());

(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1

else

let rec user () =
let rec wait n =
if n = 0 then return () else wait (n - 1)
In
| nextltem (); wait 10; user ()

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData := !cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —

let cachedSize = length !cachedData in

(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)

else
return ());

(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1

else

let rec user () =
let rec wait n =
if n = 0 then return () else wait (n - 1)
In
T nextltem (); wait 10; user ()

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData :=!cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —

let cachedSize = length !cachedData in

(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)

else
return ());

(if 'currentltem < cachedSize then
T display (toString (nth !cachedData !currentltem));
currentltem :=!currentltem + 1

else

let rec user () =
let rec wait n =
if n = 0 then return () else wait (n - 1)
In
T nextltem (); wait 10; user ()

T display "please wait a bit and try again”);
clientLoop batchSize
) as p in return p
In

await batchSizePromise until (batchSize) in clientLoop batchSize

let client () = let server batchSize =
T batchSizeRequest (); let rec waitForBatchSize () =
promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in promise (batchSizeRequest () +—
T batchSizeResponse batchSize;
let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in waitForBatchSize ()
) as p in return p
in
let rec waitForRequest () =
promise (request offset —
let payload = map (fun x +— 10 = x) (range offset (offset + batchSize - 1)) in
T response payload;
waitForRequest ()
) as p in return p
in
waitForBatchSize (); waitForRequest ()

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch +—
cachedData :=!cachedData @ newBatch:
requestinProgress := false; return (())
) as _in return ()
in

let rec clientLoop batchSize =
promise (nextltem () —

let cachedSize = length !cachedData in

(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
requestNewData (cachedSize + 1)

else
return ());

(if 'currentltem < cachedSize then

let rec user () =
let rec wait n =
if n = 0 then return () else wait (n - 1)
In
T nextltem (); wait 10; user ()

[display (toString (nth !cachedData !currentltem));
currentltem := !currentltem + 1
else
[display
clientLoop batchSize
) as p in return p
in

await batchSizePromise until (batchSize) in clientLoop batchSize

[HE CALCULUS

THE Az-CALCULUS

THE Az-CALCULUS

» Extension of the fine-grain call-by-value A-calculus

» values

V.W = ... | (V)

» computations

M,N := ... | gen.recursion | previously shown computations

p processes

P,OQ == runM | P[|Q | Top(V,P) | | op(W,P)

THE Az-CALCULUS

» Extension of the fine-grain call-by-value A-calculus

» values

V.W = | (V)

» computations

M,N := ... | gen.recursion | previously shown computations

p processes

P,OQ == runM | P[|Q | Top(V,P) | | op(W,P)

THE Az-CALCULUS

» Extension of the fine-grain call-by-value A-calculus

» values

|V —)

_atulfilled promise

» computations

M,N := ... | gen.recursion | previously shown computations

p processes

P,OQ == runM | P[|Q | Top(V,P) | | op(W,P)

THE TYPES

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —_____"

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
Ne___ usedto type payloads of signals & interrupts

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —_____"

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
Ne___ usedto type payloads of signals & interrupts

» Computationtypes €, = X! (o,1)

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
___ used to type payloads of signals & interrupts

» Computationtypes €, = X! (o,1)

type of returned values —____~"

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
___ used to type payloads of signals & interrupts

» Computationtypes €, = X! (o,1)

type of returned values —_____"" o .
“—_— possible issued signals

0C X

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
___ used to type payloads of signals & interrupts

' ible installed int t hand|
» Computationtypes €, X ! (0,1) p55| e installed interrupt handlers

~ 1 ={..,opi= (0, 1), ...}

type of returned values —_____"" o .
—_— possible issued signals

0C X

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
___ used to type payloads of signals & interrupts

» Computation types

~ 1 ={..,opi= (0, 1), ...}

ossible installed interrupt handlers
¢, = X!(o,1) .

type of returned values —_____"" o .
“~—_— possible issued signals

» Processtypes AP, 0 ::= X!l(o,1) | P|| @ 0CX

THE TYPES

» Typing judgements [FV:X I'-M: € ['FP: P

» Valuetypes XY == b | 1 |0 | XXY | X+Y | X->6 | (X)

promise type —__~""

» Ground/mobiletypes A,B = b | 1 | 0| AXB | A+B
___ used to type payloads of signals & interrupts

: ossible installed interrupt handlers
» Computationtypes €, = X! (o,1) . .
e { cee 5 OP; ™ (Oi, ll') y e }
type of returned values —_____" N\ B .
~—_— possible issued signals
» Processtypes P, Q = X!l(o,1)) | L|| @ 0=
. AL match the structure of processes

THE TYPING RULES

THE TYPING RULES

op €0 FI—V:AOID I'EM: X! (o,1)
I'E Top(V,M): X! (0,1)

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

_payload value matches op's signature op : Aop

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

_payload value matches op's signature op : Aop

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (0,1)
I'E Lop(V,M): X! (opl (0,1))

_payload value matches op's signature op : A

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (o,1)
'+ | op (VM) : X (Op 1 (0,1)) /action of interrupts

~" on effect information

‘payload value matches op's signature op : Aqp

THE TYPING RULES

(oUo,ilop— Llut) it 1(op) = (0,1
(0,1) otherwise

op | (0,1) = {

op is allowed

[+ V:AOID I'EM: X! (0,1)
| = op (V.M): X! (Op (0,1)) action/of iInterrupts

" on effect information

_payload value matches op's signature op : A

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (o,1)
'+ | op (VM) : X (Op 1 (0,1)) /action of interrupts

~" on effect information

_payload value matches op's signature op : Aop

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (o,1)
' | op (VM) : X! (Op 1 (0,1)) /action of interrupts

~" on effect information

" (op) = (0, 1) [x:A, B M: (X) ! (o,1) [p : (X)FN:Y! (0,1)
['F promise (opx —» M)aspinN:Y! (0,1)

_payload value matches op's signature op : Aop

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (o,1)
' | op (VM) : X! (op 1 (0,1)) /action of interrupts

effects of op's handlers

~" on effect information

/(op)=(0,) Tox:A,FM:(X)!(0,) T,p:(X)FN:Y!(0,0)
['F promise (opx —» M)aspinN:Y! (0,1)

_payload value matches op's signature op : Aop

THE TYPING RULES

_>opEo I'HV: Aop I'EM: X! (o,1)
I'E Top(V.M): X! (0,1)

op is allowed to happen

FI—V:AOP I'EM: X! (o,1)
' | op (VM) : X! (op 1 (0,1)) /action of interrupts

~" on effect information

effects of op's handlers

promise-typed ————

" (op) = (0, 1) [x:A, B M: (X) ! (o,1) [p : (X)FN:Y! (0,1)

['F promise (opx —» M)aspinN:Y! (0,1)

THE OPERATIONAL SEMANTICS

THE OPERATIONAL SEMANTICS

» Small-step reduction semantics M w N

THE OPERATIONAL SEMANTICS

» Small-step reduction semantics M w N P «» QO

» standard reduction rules from the fine-grain call-by-value A-calculus

THE OPERATIONAL SEMANTICS

» Small-step reduction semantics M w N P «» QO

» standard reduction rules from the fine-grain call-by-value A-calculus

» reduction rules we have already seen

THE OPERATIONAL SEMANTICS

» Small-step reduction semantics M w N P «» QO

» standard reduction rules from the fine-grain call-by-value A-calculus
» reduction rules we have already seen

» commutativity of signals with int. handlers
promise (opx — M) as p in (T op” (V,N))
~ 1 op’ (V, promise (opx — M) as p in N)

THE OPERATIONAL SEMANTICS

» Small-step reduction semantics M w N P «» QO

» standard reduction rules from the fine-grain call-by-value A-calculus
» reduction rules we have already seen

» commutativity of signals with int. handlers
promise (opx — M) as p in (T op” (V,N))
~ 1 op’ (V, promise (opx — M) as p in N)

» evaluation context rules

THE TYPE SAFETY

THE TYPE SAFETY

» Progress

» Type preservation

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» Type preservation

* signals

THE TYPE SAFEW * interrupt handlers

* blocked awaits

» Progress or
return values

» EM: X! (o,1) implies AN. M~ N or Minresultform

» Type preservation

* signals

THE TYPE SAFEW * interrupt handlers

eval. ctxs. only bind promise-typed variables * blocked awaits

» Progress or

return values

» EM: X! (o,1) implies IN.M« N or Min result form

» Type preservation

* signals

THE TYPE SAFEW * interrupt handlers

eval. ctxs. only bind promise-typed variables * blocked awaits

or

» Progress
return values

» EM: X! (o,1) implies IN.M« N or Min result form

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

* signals

THE TYPE SAFEW * interrupt handlers

eval. ctxs. only bind promise-typed variables * blocked awaits

» Progress or

return values

» EM: X! (o,1) implies IN.M« N or Min result form

» PP implies 30.Pw (Q or Pinresultform

* signals

* parallel compositions =

» Type preservation * individual computation result forms (w/o signals)

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» 'EM:X!(0,1) and M~ N imply ['EFN:X!(o,1)

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» THFM:X!(0,1) and M~ N imply THFN:X! (0,1
payloads do not include nor depend on promises —

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» 'EM:X!(0,1) and M~ N imply ['EFN:X!(o,1)
payloads do not include nor depend on promises A AR C,p: (X)FV: Ay = T'EV:IA,

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» 'EM:X!(0,1) and M~ N imply ['EFN:X!(o,1)

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» 'EM:X!(0,1) and M~ N imply ['EFN:X!(o,1)

» I'FP: 9 and PwQ imply 30.9 Q@ and T'HQ:Q@

THE TYPE SAFETY

» Progress

» EM: X! (o,1) implies AN. M~ N or Minresultform

» PP implies 30.Pw (Q or Pinresultform

» Type preservation

» 'EM:X!(0,1) and M~ N imply ['EFN:X!(o,1)

» 'EP: % and Pw»Q imply 360.9» Q@ and T'FQ:0
process types also "reduce” A

THE TYPE SAFETY

» Progress

e P w P or M in result form

e P w opl P
e P w» O = oplP w» opl O

iNn result form

« op | (X1 (0,1)) = X! (op | (0.1)) ChN: X! (o)
+ opL(2]1Q) = (oplP)|(op | Q)

Pw»0Q and THO: G
process types also "reduce” A

ThE Top(V.P)|| O w top(V,P|] (V,0))

» Progress

P v P or M in result form

P w oopl P
P w O = oplP w opl O

iNn result form

+ op L (X!1(0.)) = X! (op | (0.) ChN:X1 (oD
« op L (2110 = (opl P | (op | Q)

Pw»0Q and THO: G
process types also "reduce” A

[HE ARTEFACI

https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753

THE ARTEFACT

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft

» Interpreter

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft
» Interpreter

» simple typechecker

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft
» Interpreter
» simple typechecker

» all the examples in the paper

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft
» Interpreter
» simple typechecker
» all the examples in the paper

» command line interface

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

» Agda formalisation of 1. 's type safety results

» only well-typed syntax, and subsumption rule as an explicit coercion

» Prototype implementation of 1. in OCaml, called Zft
» Interpreter
» simple typechecker
» all the examples in the paper
» command line interface

» web interface

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

[HE EXAMPLES

THE EXAMPLES

THE EXAMPLES

» Preemptive multi-threading

THE EXAMPLES

» Preemptive multi-threading

» Remote function calls

» including simulating call cancellations

THE EXAMPLES

» Preemptive multi-threading

» Remote function calls

» including simulating call cancellations

» (Concurrent) runners of algebraic effects

THE EXAMPLES

» Preemptive multi-threading

» Remote function calls

» including simulating call cancellations
» (Concurrent) runners of algebraic effects

» Non-blocking post-processing of promised values

» in the same spirit as how one is taught to program with futures and promises

THE EXAMPLES

» Preemptive multi-threading

» Remote function calls

» including simulating call cancellations
» (Concurrent) runners of algebraic effects

» Non-blocking post-processing of promised values

» in the same spirit as how one is taught to program with futures and promises

» Go-like select statements

» essentially n-ary (blocking) interrupt handlers

THE EXAMPLES

» Preemptive multi-threading

» Remote function calls

» including simulating call cancellations
» (Concurrent) runners of algebraic effects

» Non-blocking post-processing of promised values

» in the same spirit as how one is taught to program with futures and promises

» Go-like select statements

» essentially n-ary (blocking) interrupt handlers

THE PREEMPTIVE MULTI-THREADING EXAMPLE

THE PREEMPTIVE MULTI-THREADING EXAMPLE

» Multi-threading is one of the most exciting applications of algebraic effects
» but the evaluation strategies one can express are cooperative in nature

» each thread needs to explicitly yield back control, stalling others until then

THE PREEMPTIVE MULTI-THREADING EXAMPLE

» Multi-threading is one of the most exciting applications of algebraic effects
» but the evaluation strategies one can express are cooperative in nature

» each thread needs to explicitly yield back control, stalling others until then

» Itis possible to simulate preemptive multi-threading

» but it requires low-level access to the specific runtime environment

THE PREEMPTIVE MULTI-THREADING EXAMPLE

» Multi-threading is one of the most exciting applications of algebraic effects
» but the evaluation strategies one can express are cooperative in nature

» each thread needs to explicitly yield back control, stalling others until then

» Itis possible to simulate preemptive multi-threading

» but it requires low-level access to the specific runtime environment

» In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE

» Multi-threading is one of the most exciting applications of algebraic effects
» but the evaluation strategies one can express are cooperative in nature

» each thread needs to explicitly yield back control, stalling others until then

» Itis possible to simulate preemptive multi-threading

» but it requires low-level access to the specific runtime environment

» In contrast, we can express preemptiveness directly within our calculus

waitForStop (); comp

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _ +>
promise (go _ > return (())) as p in (await p until {_) in waitForStop ())
) as p'in return p’

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _

promise (go _ > return (())) as p in (await p until {_) in waitForStop ())
)as p'in return p'

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _ +>
promise (go _ > return (())) as p in (await p until {_) in waitForStop ())
) as p'in return p’

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _
promise (go > return (())) as p in (await p until (_) in waitForStop ())
) as p' in return p'

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _ +>
promise (go _ > return (())) as p in (await p until {_) in waitForStop ())
) as p'in return p’

Multi-threading
evaluation strategies cooperative in nature

explicitly yield back control

simulate preemptive multi-threading

low-level access runtime environment

preemptiveness directly

waitForStop (); comp

let rec waitForStop () =

promise (stop _
promise (go _ > return {())) as p in (await p until {_) in waitForStop ())
) as p'in return p'

IHE FUTURE

THE FUTURE

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

» Higher-order payloads and dynamic process creation

» e.g., Fitch-style modal types to rule out enveloping promises from payloads

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

» Higher-order payloads and dynamic process creation

» e.g., Fitch-style modal types to rule out enveloping promises from payloads

» Denotational semantics based on monads for scoped effects

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

» Higher-order payloads and dynamic process creation

» e.g., Fitch-style modal types to rule out enveloping promises from payloads
» Denotational semantics based on monads for scoped effects

» Using the effect system for effect-dependent optimisations

—M:X!(0o,1) and 1(op) =1 imply Lop (V,M) w*M

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

» Higher-order payloads and dynamic process creation

» e.g., Fitch-style modal types to rule out enveloping promises from payloads
» Denotational semantics based on monads for scoped effects

» Using the effect system for effect-dependent optimisations

—M:X!(0o,1) and 1(op) =1 imply Lop (V,M) w*M

» Refine the "broadcast everything everywhere" communication strategy

THE FUTURE

» Bidirectional type system, effect-checking, and channel-based implementation

» Higher-order payloads and dynamic process creation

» e.g., Fitch-style modal types to rule out enveloping promises from payloads
» Denotational semantics based on monads for scoped effects

» Using the effect system for effect-dependent optimisations

—M:X!(0o,1) and 1(op) =1 imply Lop (V,M) w*M

» Refine the "broadcast everything everywhere" communication strategy

» In depth comparison with message-passing concurrency frameworks

THE CONCLUSION

THE CONCLUSION

THE CONCLUSION

» We have shown how to incorporate asynchrony within algebraic effects, by
» decoupling operation calls into signals and interrupts, and

» installing interrupt handlers and selectively blocking execution

THE CONCLUSION

» We have shown how to incorporate asynchrony within algebraic effects, by
» decoupling operation calls into signals and interrupts, and

» installing interrupt handlers and selectively blocking execution

» We have captured these ideas in the A,-calculus
» type-and-effect system, sub-effecting, and small-step operational semantics

» type safety (reduction of open terms, hoisting T past s, sel. blocking)

THE CONCLUSION

» We have shown how to incorporate asynchrony within algebraic effects, by
» decoupling operation calls into signals and interrupts, and

» installing interrupt handlers and selectively blocking execution

» We have captured these ideas in the A,-calculus
» type-and-effect system, sub-effecting, and small-step operational semantics

» type safety (reduction of open terms, hoisting T past s, sel. blocking)

» Examples ranging from preemptive multi-threading to remote function calls

THE CONCLUSION

» We have shown how to incorporate asynchrony within algebraic effects, by
» decoupling operation calls into signals and interrupts, and

» installing interrupt handlers and selectively blocking execution

» We have captured these ideas in the A,-calculus
» type-and-effect system, sub-effecting, and small-step operational semantics

» type safety (reduction of open terms, hoisting T past s, sel. blocking)

» Examples ranging from preemptive multi-threading to remote function calls

» Agda formalisation of 1, and prototype implementation ZAff

https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753

