
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 834146.

This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-17-1-0326.

ASYNCHRONOUS EFFECTS
DANEL AHMAN MATIJA PRETNAR
UNIVERSITY OF LJUBLJANA, SLOVENIA 07.01.2021

THE PROBLEM

THE SETTING WE WORK IN

THE SETTING WE WORK IN

▸ Effectful programming with algebraic effects and effect handlers 
 
 

[Plotkin & Power '02, Plotkin & Pretnar '09]

THE SETTING WE WORK IN

▸ Effectful programming with algebraic effects and effect handlers 
 
  M, N ::= . . . | 𝗈𝗉 (V, y . M) | 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H

H ::= { . . . , 𝗈𝗉𝗂 x k ↦ M𝗈𝗉𝗂
, . . . , 𝗋𝖾𝗍𝗎𝗋𝗇 x ↦ N𝗋𝖾𝗍 }

[Plotkin & Power '02, Plotkin & Pretnar '09]

THE SETTING WE WORK IN

▸ Effectful programming with algebraic effects and effect handlers 
 
 

▸ Separates (operation-based) interfaces from (user-definable) implementations 
 
 
 

M, N ::= . . . | 𝗈𝗉 (V, y . M) | 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H

H ::= { . . . , 𝗈𝗉𝗂 x k ↦ M𝗈𝗉𝗂
, . . . , 𝗋𝖾𝗍𝗎𝗋𝗇 x ↦ N𝗋𝖾𝗍 }

[Plotkin & Power '02, Plotkin & Pretnar '09]

THE SETTING WE WORK IN

▸ Effectful programming with algebraic effects and effect handlers 
 
 

▸ Separates (operation-based) interfaces from (user-definable) implementations 
 
 
 

M, N ::= . . . | 𝗈𝗉 (V, y . M) | 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H

H ::= { . . . , 𝗈𝗉𝗂 x k ↦ M𝗈𝗉𝗂
, . . . , 𝗋𝖾𝗍𝗎𝗋𝗇 x ↦ N𝗋𝖾𝗍 }

𝗁𝖺𝗇𝖽𝗅𝖾 (𝗋𝖾𝗍𝗎𝗋𝗇 V) 𝗐𝗂𝗍𝗁 H ⇝ N𝗋𝖾𝗍[V/x]

𝗁𝖺𝗇𝖽𝗅𝖾 (𝗈𝗉 (V, y . M)) 𝗐𝗂𝗍𝗁 H ⇝ M𝗈𝗉[V/x, (𝖿𝗎𝗇 y ↦ 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H)/k]

[Plotkin & Power '02, Plotkin & Pretnar '09]

THE SETTING WE WORK IN

▸ Effectful programming with algebraic effects and effect handlers 
 
 

▸ Separates (operation-based) interfaces from (user-definable) implementations 
 
 
 

▸ State, rollbacks, exceptions, non-determ., concurrency, prob. programming, ...

M, N ::= . . . | 𝗈𝗉 (V, y . M) | 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H

H ::= { . . . , 𝗈𝗉𝗂 x k ↦ M𝗈𝗉𝗂
, . . . , 𝗋𝖾𝗍𝗎𝗋𝗇 x ↦ N𝗋𝖾𝗍 }

𝗁𝖺𝗇𝖽𝗅𝖾 (𝗋𝖾𝗍𝗎𝗋𝗇 V) 𝗐𝗂𝗍𝗁 H ⇝ N𝗋𝖾𝗍[V/x]

𝗁𝖺𝗇𝖽𝗅𝖾 (𝗈𝗉 (V, y . M)) 𝗐𝗂𝗍𝗁 H ⇝ M𝗈𝗉[V/x, (𝖿𝗎𝗇 y ↦ 𝗁𝖺𝗇𝖽𝗅𝖾 M 𝗐𝗂𝗍𝗁 H)/k]

[Plotkin & Power '02, Plotkin & Pretnar '09]

THE PROBLEM WITH ALGEBRAIC EFFECTS

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

continuation is blocked until 𝑊 is computed

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

▸ But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

▸ But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

▸ Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

▸ But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

▸ Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

Koka [Leijen '17], Multicore OCaml [Dolan et al. '18]

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

▸ But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

▸ Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

▸ Conventional treatment of algebraic effects is inherently synchronous 
 
 
 
 

▸ Blocking needed in the presence of (non-linear) general effect handlers, and  
 to avoid having to reduce open terms (y is bound immediately)

▸ But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

▸ Existing approaches to asynchrony simply delegate it to language backends

THE PROBLEM WITH ALGEBRAIC EFFECTS

. . . ⇝ 𝗈𝗉 (V, y . M)
↑

M𝗈𝗉[V/x]* top-level implementation 

* effect handler 

* runner of alg. effects

This paper: How to capture asynchrony in a self-contained core language?

M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .
↑ ↓

THE IDEA

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .

↑ ↓
M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

▸ Execution of algebraic operation calls has three distinct phases

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .

↑ ↓
M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W
(1)

(2)

(3)
signalling to execute 
some impl. of op

executing op's impl.

interrupting M's blocking

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

▸ Execution of algebraic operation calls has three distinct phases

▸ Idea: Decouple all three phases into separate programming constructs, so that

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .

↑ ↓
M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W
(1)

(2)

(3)
signalling to execute 
some impl. of op

executing op's impl.

interrupting M's blocking

THE THREE PHASES OF ALGEBRAIC OPERATION CALLS

▸ Execution of algebraic operation calls has three distinct phases

▸ Idea: Decouple all three phases into separate programming constructs, so that

▸ M would not block while (2) happens asynchronously,

▸ programmers could choose if/when to block M for (3) to happen, and

▸ (3) could happen without originating from (1) (and vice versa)

. . . ⇝ 𝗈𝗉 (V, y . M) M[W/y] ⇝ . . .

↑ ↓
M𝗈𝗉[V/x] ⇝* 𝗋𝖾𝗍𝗎𝗋𝗇 W
(1)

(2)

(3)
signalling to execute 
some impl. of op

executing op's impl.

interrupting M's blocking

THE APPROACH

THE SIGNALS

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

signal name

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

payload

signal name

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

payload

continuation

signal name

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

𝗅𝖾𝗍 x = (↑ 𝗈𝗉 (V, M)) 𝗂𝗇 N
⇝ ↑ 𝗈𝗉 (V, (𝗅𝖾𝗍 x = M 𝗂𝗇 N))

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (cachedSize + 1, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)

THE SIGNALS

▸ Our computations can issue outgoing signals  
 

▸ propagate outwards (↑-notation) (just like algebraic operations)

▸ do not block their continuation (unlike algebraic operations) 
 
 

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↑ 𝗈𝗉 (V, M)

. . . ⇝ ↑ 𝗈𝗉 (V, M)
𝗈𝗉 V

. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M. . . ⇝ ↑ 𝗈𝗉 (V, M) ⇝ M ⇝ . . .

↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (cachedSize + 1, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ↑ 𝖽𝗂𝗌𝗉𝗅𝖺𝗒 (message, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)

THE INTERRUPTS

THE INTERRUPTS

▸ Our computations can be interrupted  
 

THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

interrupt name

THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

payload

interrupt name

THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

payload

continuation

interrupt name

THE INTERRUPTS

▸ Our computations can be interrupted  
 

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗈𝗉 (W, ↑ 𝗈𝗉′� (V, M))
⇝ ↑ 𝗈𝗉′� (V, ↓ 𝗈𝗉 (W, M))

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗈𝗉 (W, ↑ 𝗈𝗉′� (V, M))
⇝ ↑ 𝗈𝗉′� (V, ↓ 𝗈𝗉 (W, M))

↓ 𝗈𝗉 (W, 𝗋𝖾𝗍𝗎𝗋𝗇 V)
⇝ 𝗋𝖾𝗍𝗎𝗋𝗇 V

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W

. . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

. . . ⇝ M

𝗈𝗉 W

. . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M). . . ⇝ M ⇝ ↓ 𝗈𝗉 (W, M) ⇝ . . .

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 (newBatch, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)

THE INTERRUPTS

▸ Our computations can be interrupted  
 

▸ propagate inwards (↓-notation) (just like effect handling)

▸ do not block their continuation (just like effect handling)

▸ can interrupt any sequence of reduction steps  

▸ Example: scrolling through a seemingly infinite feed (user & client & server)

M, N ::= . . . | ↓ 𝗈𝗉 (W, M)

↓ 𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾 (newBatch, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) ↓ 𝗇𝖾𝗑𝗍𝖨𝗍𝖾𝗆 ((), M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

(propagate)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

(propagate)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))

(propagate)

(broadcast)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 (↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋)))

(propagate)

(broadcast)

(propagate)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

▸ But interrupts can also appear spontaneously!

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 (↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋)))

(propagate)

(broadcast)

(propagate)

THE SIGNAL FOR THE SENDER IS AN INTERRUPT TO THE RECEIVER

▸ Programmers are not expected to write interrupts explicitly in their programs!

▸ Instead, interrupts are (commonly) induced by signals from other processes 
 
 
 
 
 
 

▸ But interrupts can also appear spontaneously!

▸ e.g. the user clicking a button or the environment preempting a process

𝗋𝗎𝗇 (↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍)) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍) | | 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋

⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | ↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋))
⇝ ↑ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, 𝗋𝗎𝗇 M𝖿𝖾𝖾𝖽𝖢𝗅𝗂𝖾𝗇𝗍 | | 𝗋𝗎𝗇 (↓ 𝗋𝖾𝗊𝗎𝖾𝗌𝗍 (V, M𝖿𝖾𝖾𝖽𝖲𝖾𝗋𝗏𝖾𝗋)))

(propagate)

(broadcast)

(propagate)

THE INTERRUPT HANDLERS

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name

handler code

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N
interrupt name

continuation

handler code

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

𝗅𝖾𝗍 y = (𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M1) 𝖺𝗌 p 𝗂𝗇 M2) 𝗂𝗇 N
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M1) 𝖺𝗌 p 𝗂𝗇 (𝗅𝖾𝗍 x = M2 𝗂𝗇 N)

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗅𝖾𝗍 p = M[V/x] 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

↓ 𝗈𝗉 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉′� x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)
⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉′� x ↦ M) 𝖺𝗌 p 𝗂𝗇 ↓ 𝗈𝗉 (V, N)

(𝗈𝗉 ≠ 𝗈𝗉′�)

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms

𝑝 has promise type ⟨𝑋⟩

THE INTERRUPT HANDLERS

▸ To react to interrupts our computations can install interrupt handlers 
 

▸ propagate outwards (just like algebraic operations)

▸ triggered by matching interrupts (interrupts are like deep effect handling)

▸ not triggered by non-matching interrupts

▸ do not block their continuation

M, N ::= . . . | 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N

N ⇝ N′�

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N ⇝ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N′�

execution of open terms

𝑝 has promise type ⟨𝑋⟩

promise types ensure type safety!

THE AWAITING

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N

promise-typed value

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
  M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N

promise-typed value

continuation

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝖺𝗐𝖺𝗂𝗍 ⟨V⟩ 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
⇝ N[V/x]

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
⇝

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

Example: client blocks until server sends its batch size

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

↑ 𝗈𝗉-𝗌𝗂𝗀 (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉-𝗂𝗇𝗍 x ↦ 𝗋𝖾𝗍𝗎𝗋𝗇 ⟨x⟩) 𝖺𝗌 p 𝗂𝗇 (𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 M))
𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls as

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls as

▸ and the implementations of op in parallel processes as follows

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

Example: client blocks until server sends its batch size

THE AWAITING

▸ Programmers can selectively block execution to await a promise to be fulfilled 
 
 

▸ reduces when provided a fulfilled promise

▸ blocks execution on yet-to-be-fulfilled promises 

▸ We now also have all the pieces to express alg. operation calls as

▸ and the implementations of op in parallel processes as follows

M, N ::= . . . | 𝖺𝗐𝖺𝗂𝗍 V 𝗎𝗇𝗍𝗂𝗅 ⟨x⟩ 𝗂𝗇 N
promise-typed value

continuation

𝗈𝗉 (V, y . M)

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉-𝗌𝗂𝗀 x ↦ ⟨M𝗈𝗉⟩) 𝖺𝗌 p 𝗂𝗇 (𝖺𝗐𝖺𝗂𝗍 p 𝗎𝗇𝗍𝗂𝗅 ⟨y⟩ 𝗂𝗇 ↑ 𝗈𝗉-𝗂𝗇𝗍 (y, 𝗋𝖾𝗍𝗎𝗋𝗇 ()))

Example: client blocks until server sends its batch size

THE RUNNING EXAMPLE

THE RUNNING EXAMPLE

THE RUNNING EXAMPLE

* request server's settings,

* install int. handler for the response, and 

* block until they arrive (but only after useful work)

THE RUNNING EXAMPLE

THE RUNNING EXAMPLE

client's main loop is a rec. defined int. handler
 * reacts to next item interrupts from user
 * issues display signals or new data requests

THE RUNNING EXAMPLE

| |

THE RUNNING EXAMPLE

| |

THE RUNNING EXAMPLE server processes are commonly rec. defined int. handlers

| |

THE RUNNING EXAMPLE

| |

THE RUNNING EXAMPLE

| |

| |

THE RUNNING EXAMPLE

| |

| |

| |
 10 11 12 13 14

 please wait
 a bit

THE RUNNING EXAMPLE

| |

| |

| |
 10 11 12 13 14

 please wait
 a bit

THE RUNNING EXAMPLE

| |

THE CALCULUS

THE 𝜆æ-CALCULUS

THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus [Levy et al. '03]

▸ values

▸ computations

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)

THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus [Levy et al. '03]

▸ values

▸ computations

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)

THE 𝜆æ-CALCULUS

▸ Extension of the fine-grain call-by-value 𝜆-calculus [Levy et al. '03]

▸ values

▸ computations

▸ processes

M, N ::= . . . | gen. recursion | previously shown computations

V, W ::= . . . | ⟨V⟩

P, Q ::= 𝗋𝗎𝗇 M | P | | Q | ↑ 𝗈𝗉 (V, P) | ↓ 𝗈𝗉 (W, P)

a fulfilled promise

THE TYPES

▸ Typing judgements

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

▸ Typing judgements

▸ Value types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

▸ Typing judgements

▸ Value types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩
promise type

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

promise type

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

promise type

used to type payloads of signals & interrupts

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values
possible issued signals  
 o ⊆ Σ

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
 ι = { ... , opi → (oi , ιi) , ... }

possible issued signals  
 o ⊆ Σ

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

▸ Process types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

𝒫, 𝒬 ::= X !! (o, ι) | 𝒫 | | 𝒬

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
 ι = { ... , opi → (oi , ιi) , ... }

possible issued signals  
 o ⊆ Σ

▸ Typing judgements

▸ Value types

▸ Ground/mobile types

▸ Computation types

▸ Process types

THE TYPES

Γ ⊢ V : X Γ ⊢ M : 𝒞 Γ ⊢ P : 𝒫

X, Y ::= b | 1 | 0 | X × Y | X + Y | X → 𝒞 | ⟨X⟩

A, B ::= b | 1 | 0 | A × B | A + B

𝒞, 𝒟 ::= X ! (o, ι)

𝒫, 𝒬 ::= X !! (o, ι) | 𝒫 | | 𝒬

promise type

used to type payloads of signals & interrupts

type of returned values

possible installed interrupt handlers 
 ι = { ... , opi → (oi , ιi) , ... }

possible issued signals  
 o ⊆ Σ

match the structure of processes

THE TYPING RULES

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)
op is allowed to happen

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)
op is allowed to happen

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

𝗈𝗉 ↓ (o, ι) = {(o ∪ o′�, ι[𝗈𝗉 ↦ ⊥] ∪ ι′�) if ι (𝗈𝗉) = (o′�, ι′�)
(o, ι) otherwise

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

effects of op's handlers

payload value matches op's signature op : Aop

THE TYPING RULES
𝗈𝗉 ∈ o Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)

Γ ⊢ ↑ 𝗈𝗉 (V, M) : X ! (o, ι)

Γ ⊢ V : A𝗈𝗉 Γ ⊢ M : X ! (o, ι)
Γ ⊢ ↓ 𝗈𝗉 (V, M) : X ! (𝗈𝗉 ↓ (o, ι))

ι′�(𝗈𝗉) = (o, ι) Γ, x : A𝗈𝗉 ⊢ M : ⟨X⟩ ! (o, ι) Γ, p : ⟨X⟩ ⊢ N : Y ! (o′�, ι′�)
Γ ⊢ 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N : Y ! (o′�, ι′�)

op is allowed to happen

action of interrupts 
on effect information

effects of op's handlers

promise-typed

payload value matches op's signature op : Aop

THE OPERATIONAL SEMANTICS

THE OPERATIONAL SEMANTICS

▸ Small-step reduction semantics M ⇝ N P ⇝ Q

THE OPERATIONAL SEMANTICS

▸ Small-step reduction semantics

▸ standard reduction rules from the fine-grain call-by-value 𝜆-calculus

M ⇝ N P ⇝ Q

THE OPERATIONAL SEMANTICS

▸ Small-step reduction semantics

▸ standard reduction rules from the fine-grain call-by-value 𝜆-calculus

▸ reduction rules we have already seen

M ⇝ N P ⇝ Q

THE OPERATIONAL SEMANTICS

▸ Small-step reduction semantics

▸ standard reduction rules from the fine-grain call-by-value 𝜆-calculus

▸ reduction rules we have already seen

▸ commutativity of signals with int. handlers (makes type safety interesting)

M ⇝ N P ⇝ Q

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 (↑ 𝗈𝗉′� (V, N))
⇝ ↑ 𝗈𝗉′� (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

THE OPERATIONAL SEMANTICS

▸ Small-step reduction semantics

▸ standard reduction rules from the fine-grain call-by-value 𝜆-calculus

▸ reduction rules we have already seen

▸ commutativity of signals with int. handlers (makes type safety interesting)

▸ evaluation context rules

M ⇝ N P ⇝ Q

𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 (↑ 𝗈𝗉′� (V, N))
⇝ ↑ 𝗈𝗉′� (V, 𝗉𝗋𝗈𝗆𝗂𝗌𝖾 (𝗈𝗉 x ↦ M) 𝖺𝗌 p 𝗂𝗇 N)

THE TYPE SAFETY

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸ ⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸ ⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

* signals 

* interrupt handlers 

* blocked awaits  
 or 
 return values

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸ ⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

eval. ctxs. only bind promise-typed variables

* signals 

* interrupt handlers 

* blocked awaits  
 or 
 return values

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

eval. ctxs. only bind promise-typed variables

* signals 

* interrupt handlers 

* blocked awaits  
 or 
 return values

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

eval. ctxs. only bind promise-typed variables

* signals 

* interrupt handlers 

* blocked awaits  
 or 
 return values

* signals 

* parallel compositions 

* individual computation result forms (w/o signals)

▸ Type preservation

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

▸ Type preservation

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

▸ Type preservation

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)
payloads do not include nor depend on promises

▸ Type preservation

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)
payloads do not include nor depend on promises Γ, p : ⟨X⟩ ⊢ V : A𝗈𝗉 ⇒ Γ ⊢ V : A𝗈𝗉

▸ Type preservation

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

▸ Type preservation

▸

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

Γ ⊢ P : 𝒫 and P ⇝ Q imply ∃ 𝒬 . 𝒫 ⇝ 𝒬 and Γ ⊢ Q : 𝒬

▸ Type preservation

▸

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

Γ ⊢ P : 𝒫 and P ⇝ Q imply ∃ 𝒬 . 𝒫 ⇝ 𝒬 and Γ ⊢ Q : 𝒬
process types also "reduce"

▸ Type preservation

▸

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

Γ ⊢ P : 𝒫 and P ⇝ Q imply ∃ 𝒬 . 𝒫 ⇝ 𝒬 and Γ ⊢ Q : 𝒬
process types also "reduce"

∙ 𝒫 ⇝ 𝒫

∙ 𝒫 ⇝ 𝗈𝗉 ↓ 𝒫

∙ 𝒫 ⇝ 𝒬 ⟹ 𝗈𝗉 ↓ 𝒫 ⇝ 𝗈𝗉 ↓ 𝒬

where

∙ 𝗈𝗉 ↓ (X !! (o, ι)) = X ! (𝗈𝗉 ↓ (o, ι))

∙ 𝗈𝗉 ↓ (𝒫 | | 𝒬) = (𝗈𝗉 ↓ 𝒫) | | (𝗈𝗉 ↓ 𝒬)

▸ Type preservation

▸

▸

THE TYPE SAFETY

▸ Progress

▸

▸

⊢ M : X ! (o, ι) implies ∃ N . M ⇝ N or M in result form

⊢ P : 𝒫 implies ∃ Q . P ⇝ Q or P in result form

Γ ⊢ M : X ! (o, ι) and M ⇝ N imply Γ ⊢ N : X ! (o, ι)

Γ ⊢ P : 𝒫 and P ⇝ Q imply ∃ 𝒬 . 𝒫 ⇝ 𝒬 and Γ ⊢ Q : 𝒬
process types also "reduce"

∙ 𝒫 ⇝ 𝒫

∙ 𝒫 ⇝ 𝗈𝗉 ↓ 𝒫

∙ 𝒫 ⇝ 𝒬 ⟹ 𝗈𝗉 ↓ 𝒫 ⇝ 𝗈𝗉 ↓ 𝒬

where

∙ 𝗈𝗉 ↓ (X !! (o, ι)) = X ! (𝗈𝗉 ↓ (o, ι))

∙ 𝗈𝗉 ↓ (𝒫 | | 𝒬) = (𝗈𝗉 ↓ 𝒫) | | (𝗈𝗉 ↓ 𝒬)

↑ 𝗈𝗉 (V, P) | | Q ⇝ ↑ 𝗈𝗉 (V, P | | ↓ 𝗈𝗉 (V, Q))

THE ARTEFACT

https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753

THE ARTEFACT

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

▸ interpreter

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

▸ interpreter

▸ simple typechecker (does not yet check effect information)

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

▸ interpreter

▸ simple typechecker (does not yet check effect information)

▸ all the examples in the paper (and more)

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

▸ interpreter

▸ simple typechecker (does not yet check effect information)

▸ all the examples in the paper (and more)

▸ command line interface (one nondeterministic reduction sequence)

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE ARTEFACT

▸ Agda formalisation of 𝜆æ's type safety results

▸ only well-typed syntax, and subsumption rule as an explicit coercion

▸ Prototype implementation of 𝜆æ in OCaml, called Æff

▸ interpreter

▸ simple typechecker (does not yet check effect information)

▸ all the examples in the paper (and more)

▸ command line interface (one nondeterministic reduction sequence)

▸ web interface (possible to explore all reduction sequences)

https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff
https://github.com/danelahman/aeff-agda
https://github.com/matijapretnar/aeff

THE EXAMPLES

THE EXAMPLES

THE EXAMPLES
▸ Preemptive multi-threading

THE EXAMPLES
▸ Preemptive multi-threading

▸ Remote function calls

▸ including simulating call cancellations

THE EXAMPLES
▸ Preemptive multi-threading

▸ Remote function calls

▸ including simulating call cancellations

▸ (Concurrent) runners of algebraic effects [Ahman & Bauer '20]

THE EXAMPLES
▸ Preemptive multi-threading

▸ Remote function calls

▸ including simulating call cancellations

▸ (Concurrent) runners of algebraic effects [Ahman & Bauer '20]

▸ Non-blocking post-processing of promised values

▸ in the same spirit as how one is taught to program with futures and promises

THE EXAMPLES
▸ Preemptive multi-threading

▸ Remote function calls

▸ including simulating call cancellations

▸ (Concurrent) runners of algebraic effects [Ahman & Bauer '20]

▸ Non-blocking post-processing of promised values

▸ in the same spirit as how one is taught to program with futures and promises

▸ Go-like select statements (see the Æff examples' library)

▸ essentially n-ary (blocking) interrupt handlers

THE EXAMPLES
▸ Preemptive multi-threading

▸ Remote function calls

▸ including simulating call cancellations

▸ (Concurrent) runners of algebraic effects [Ahman & Bauer '20]

▸ Non-blocking post-processing of promised values

▸ in the same spirit as how one is taught to program with futures and promises

▸ Go-like select statements (see the Æff examples' library)

▸ essentially n-ary (blocking) interrupt handlers

THE PREEMPTIVE MULTI-THREADING EXAMPLE

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE PREEMPTIVE MULTI-THREADING EXAMPLE
▸ Multi-threading is one of the most exciting applications of algebraic effects

▸ but the evaluation strategies one can express are cooperative in nature

▸ each thread needs to explicitly yield back control, stalling others until then

▸ It is possible to simulate preemptive multi-threading [Dolan et al. '18]

▸ but it requires low-level access to the specific runtime environment

▸ In contrast, we can express preemptiveness directly within our calculus

THE FUTURE

THE FUTURE

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

▸ Higher-order payloads and dynamic process creation

▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

▸ Higher-order payloads and dynamic process creation

▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

▸ Denotational semantics based on monads for scoped effects [Piróg et al. ‘18]

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

▸ Higher-order payloads and dynamic process creation

▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

▸ Denotational semantics based on monads for scoped effects [Piróg et al. ‘18]

▸ Using the effect system for effect-dependent optimisations 
⊢ M : X ! (o, ι) and ι (𝗈𝗉) = ⊥ imply ↓ 𝗈𝗉 (V, M) ⇝* M

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

▸ Higher-order payloads and dynamic process creation

▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

▸ Denotational semantics based on monads for scoped effects [Piróg et al. ‘18]

▸ Using the effect system for effect-dependent optimisations 

▸ Refine the "broadcast everything everywhere" communication strategy

⊢ M : X ! (o, ι) and ι (𝗈𝗉) = ⊥ imply ↓ 𝗈𝗉 (V, M) ⇝* M

THE FUTURE

▸ Bidirectional type system, effect-checking, and channel-based implementation

▸ Higher-order payloads and dynamic process creation

▸ e.g., Fitch-style modal types to rule out enveloping promises from payloads

▸ Denotational semantics based on monads for scoped effects [Piróg et al. ‘18]

▸ Using the effect system for effect-dependent optimisations 

▸ Refine the "broadcast everything everywhere" communication strategy

▸ In depth comparison with message-passing concurrency frameworks

⊢ M : X ! (o, ι) and ι (𝗈𝗉) = ⊥ imply ↓ 𝗈𝗉 (V, M) ⇝* M

THE CONCLUSION

THE CONCLUSION

THE CONCLUSION

▸ We have shown how to incorporate asynchrony within algebraic effects, by

▸ decoupling operation calls into signals and interrupts, and

▸ installing interrupt handlers and selectively blocking execution

THE CONCLUSION

▸ We have shown how to incorporate asynchrony within algebraic effects, by

▸ decoupling operation calls into signals and interrupts, and

▸ installing interrupt handlers and selectively blocking execution

▸ We have captured these ideas in the 𝜆æ-calculus

▸ type-and-effect system, sub-effecting, and small-step operational semantics

▸ type safety (reduction of open terms, hoisting ↑ past promises, sel. blocking)

THE CONCLUSION

▸ We have shown how to incorporate asynchrony within algebraic effects, by

▸ decoupling operation calls into signals and interrupts, and

▸ installing interrupt handlers and selectively blocking execution

▸ We have captured these ideas in the 𝜆æ-calculus

▸ type-and-effect system, sub-effecting, and small-step operational semantics

▸ type safety (reduction of open terms, hoisting ↑ past promises, sel. blocking)

▸ Examples ranging from preemptive multi-threading to remote function calls

THE CONCLUSION

▸ We have shown how to incorporate asynchrony within algebraic effects, by

▸ decoupling operation calls into signals and interrupts, and

▸ installing interrupt handlers and selectively blocking execution

▸ We have captured these ideas in the 𝜆æ-calculus

▸ type-and-effect system, sub-effecting, and small-step operational semantics

▸ type safety (reduction of open terms, hoisting ↑ past promises, sel. blocking)

▸ Examples ranging from preemptive multi-threading to remote function calls

▸ Agda formalisation of 𝜆æ and prototype implementation Æff

https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753
https://doi.org/10.5281/zenodo.4072753

