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M,N = ... | op(V,y.M) | handle M with H

H == {...,opxk—>M, , ..., returnx — Ny, }

» Separates (operation-based) interfaces from (user-definable) implementations

handle (return V) with H w  N__[V/x]

handle (op (V,y.M)) with H M, | Vix, (fun y — handle M with H)/k]

» State, rollbacks, exceptions, non-determ., concurrency, prob. programming, ...
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» Conventional treatment of algebraic effects is inherently synchronous

* top-level implementation

M, [Vix]  w*  return W

*x effect handler

* runner of alg. effects ) )

~ op (V,y.M) MIW/iy] w

» Blocking needed in the presence of (non-linear) general effect handlers, and
to avoid having to reduce open terms (y is bound immediately)

» But it forces all uses of alg. effs. to be synchronous, even if this is not necessary

» Existing approaches to asynchrony simply delegate it to language backends

This paper: How to capture asynchrony in a self-contained core language?
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THE THREE PHASES OF ALGEBRAIC OPERATION CALLS ~ executing op's imp.

el My [Vix] return W

.~ op(V,y.M) M|W/y]l w

interrupting M's blocking

some impl. of op \_

» Execution of algebraic operation calls has three distinct phases

» ldea: Decouple all three phases into separate programming constructs, so that

» M would not block while (2) happens asynchronously,
» programmers could choose if/when to block M for (3) to happen, and

» (3) could happen without originating from (1)
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» Our computations can issue outgoing signals

M,N ::= ... | Top(V,M)

» propagate outwards (T-notation)

» do not block their continuation

opVT

~» Top(V,M) w M

» Example: scrolling through a seemingly infinite feed

T request (cachedSize + 1, Msoyciiont) T display (message, M:..qciient)
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THE INTERRUPTS

» Our computations can be interrupted

M,N = ... | [|op(WM)

» propagate inwards (! -notation)
» do not block their continuation

» can interrupt any sequence of reduction steps

» Example: scrolling through a seemingly infinite feed

| response (newBatch, M ycpent) | nextItem ((), M:..qciient)
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» Programmers are not expected to write interrupts explicitly in their programs!

» Instead, interrupts are (commonly) induced by signals from other processes

run (1 request (V, MfeedCIient)) | | run MfeedServer

> T request (V9 run MfeedCIient) ‘ ‘ run MfeedServer

~ request (Va run MfeedCIient ‘ ‘ } request (V,run MfeedServer))

~ | request (V, run Meooycrient || TUN (| request (V, Me..yserver) ))

» Butinterrupts can also appear spontaneously!

» e.g. the user clicking a button or the environment preempting a process
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THE INTERRUPT HANDLERS

» To react to interrupts our computations can install interrupt handlers
M,N ::= ... | promise(opx —» M)aspinN
» propagate outwards
» triggered by matching interrupts

» not triggered by non-matching interrupts

——— execution of open terms

» do not block their continuation

romise types ensure type safety! 7
NwN P YP yp y

promise (opx — M) as pin N w promise (opx — M)aspin N’
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» Programmers can selectively block execution to await a promise to be fulfilled

M,N == ... | awaitVuntl(x)inN continuation

promise_typed value —_
» reduces when provided a fulfilled promise

» blocks execution on yet-to-be-fulfilled promises

» We now also have all the pieces to express alg. operation calls op (V,y.M) as

» and the implementations of op in parallel processes as follows
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T batchSizeRequest ();

promise (batchSizeResponse batchSize +— return (batchSize)) as batchSizePromise in

let (cachedData , requestInProgress , currentltem) = (ref [] , ref false , ref 0) in

let requestNewData offset =
requestIinProgress := true;
T request offset;
promise (response newBatch
cachedData :=!cachedData @ newBatch:

requestinProgress := false; return (())
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In
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(if ('currentltem > cachedSize - batchSize / 2) && (not !requestinProgress) then
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T display (toString (nth !cachedData !currentltem));

currentltem :=!currentltem + 1
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T display "please wait a bit and try again”);
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In

await batchSizePromise until (batchSize) in clientLoop batchSize
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» Small-step reduction semantics M w N P «» QO

» standard reduction rules from the fine-grain call-by-value A-calculus
» reduction rules we have already seen

» commutativity of signals with int. handlers
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