
 Recall for free:
preorder - respecting state monads in

Danel Ahman

LFCS, University of Edinburgh

(joint work with Aseem Rastogi and Nikhil Swamy at MSR)
 

PLInG Meeting
13 October 2016

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE b wpp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE b wpp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

 PURE , DIV , STATE - Dijkstra monads

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE b wpp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

 PURE , DIV , STATE - Dijkstra monads

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE t2 wp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

 weakest precondition predicate transformers

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE b wpp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

• Some resources:

• www.fstar-lang.org

• "Dependent Types and Multi-Monadic Effects in F*" [POPL'16]

• "Dijkstra Monads for Free" [POPL'17]

 PURE , DIV , STATE - Dijkstra monads

• An effectful dependently-typed functional language

a,b ::= ... | x:a → PURE t2 wp

 | x:a → DIV b wpd

 | x:a → STATE b wps

 | x:a → ST b pre post

 weakest precondition predicate transformers

http://www.fstar-lang.org

Outline

• A recurring phenomenon

• Preorder-respecting (Dijkstra) state monads in F*

• Some examples

• A glimpse of the formal metatheory

• What are Dijkstra monads fibrationally?  
 (if time permits)

A recurring phenomenon

Example 1

Example 1

let s = get () in
let _ = put (s + 1) in
let s' = get () in
f () ;

let s'' = get () in
g ()

Example 1

let s = get () in
let _ = put (s + 1) in
let s' = get () in
f () ;

let s'' = get () in
g ()

assert (s' > 0) ;

Example 1

let s = get () in
let _ = put (s + 1) in
let s' = get () in
f () ;

let s'' = get () in
g ()

assert (s' > 0) ;

 f only increases the state (counter)

Example 1

let s = get () in
let _ = put (s + 1) in
let s' = get () in
f () ;

let s'' = get () in
g ()

assert (s' > 0) ;

 f only increases the state (counter)

assert (s'' > 0) ;

Example 1

let s = get () in
let _ = put (s + 1) in
let s' = get () in
f () ;

let s'' = get () in
g ()

assert (s' > 0) ;

 f only increases the state (counter)

assert (s'' > 0) ;
• How to prove the 2nd assert "for free"?  

• How to avoid global spec. in the type of f about s' ≤ s''?  

• Generalise to other preorders and stable predicates?

Example 2

Example 2

val f : ref int → STATE unit (fun p s → True)

let f r =
 let r' = alloc 0 in
 g r r'

Example 2

val f : ref int → STATE unit (fun p s → True)

let f r =
 let r' = alloc 0 in
 g r r'

 assert (r <> r') ;

Example 2

val f : ref int → STATE unit (fun p s → True)

let f r =
 let r' = alloc 0 in
 g r r'

 assert (r <> r') ;

 FStar.ST.recall r ;

Example 2

val f : ref int → STATE unit (fun p s → True)

let f r =
 let r' = alloc 0 in
 g r r'

 assert (r <> r') ;

• FStar.ST.recall is used pervasively in practice 

• Can't implement it - has to be taken as an axiom  

• It is intuitively correct - there is no dealloc in F*  

• How to make this intuition formal?

 FStar.ST.recall r ;

Example 3

Example 3

Monotonic references in FStar.Monotonic.RRef

type m_ref (a:Type) (rel:preorder a)

Example 3

Monotonic references in FStar.Monotonic.RRef

type m_ref (a:Type) (rel:preorder a)

Provides operations

• recall - works as in FStar.ST.recall

• witness - witness a predicate holding value of a ref.

• testify - a previously witnessed predicate holds for a ref.

Example 3

Monotonic references in FStar.Monotonic.RRef

type m_ref (a:Type) (rel:preorder a)

Provides operations

• recall - works as in FStar.ST.recall

• witness - witness a predicate holding value of a ref.

• testify - a previously witnessed predicate holds for a ref.

 also has to be
 taken as an axiom

Example 3

Monotonic references in FStar.Monotonic.RRef

type m_ref (a:Type) (rel:preorder a)

Provides operations

• recall - works as in FStar.ST.recall

• witness - witness a predicate holding value of a ref.

• testify - a previously witnessed predicate holds for a ref.

Used pervasively in mitls-fstar

• for monotone sequences, -counters and -logs

 also has to be
 taken as an axiom

State monads in

State monads in

State monads in

STATE : a:Type

 → wp:((a → state → Type0) → state → Type0)

 → Effect

The state monad in F* has (roughly) the following type

State monads in

STATE : a:Type

 → wp:((a → state → Type0) → state → Type0)

 → Effect

The state monad in F* has (roughly) the following type

val put : x:state
 → STATE unit (fun p s → p () x)

WPs of state operations are familiar from Hoare Logic, e.g.

State monads in

STATE : a:Type

 → wp:((a → state → Type0) → state → Type0)

 → Effect

The state monad in F* has (roughly) the following type

Usually a more human-readable syntactic sugar is used

ST : a:Type
 → pre:(state → Type0)

 → post:(state → (a → state → Type0))
 → Effect

Preorder-respecting state monads in

High-level picture

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

• add an operation for witnessing stable predicates

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

• add an operation for witnessing stable predicates

• add an operation for recalling stable predicates

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

• add an operation for witnessing stable predicates

• add an operation for recalling stable predicates

• introduce a ■-modality on stable predicates

High-level picture

Idea is based on axioms of FStar.ST.recall and mref 
and aims to be a replacement for them in long-term

At high-level, we:  
• index F* state monads by preorders on states

• ensure that writes respect them (think update monads)

• add an operation for witnessing stable predicates

• add an operation for recalling stable predicates

• introduce a ■-modality on stable predicates

"witnessed"

Relations and predicates

Relations and predicates

Relations and preorders

let relation a = a → a → Type0

let preorder a = rel:relation a
 { (forall x . rel x x) ∧
 (forall x y z . rel x y ∧ rel y z ⇒ rel x z) }

Relations and predicates

Relations and preorders

let relation a = a → a → Type0

let preorder a = rel:relation a
 { (forall x . rel x x) ∧
 (forall x y z . rel x y ∧ rel y z ⇒ rel x z) }

Predicates and stability

let predicate a = a → Type0

let stable_predicate #a rel = p:predicate a
 { forall x y . p x ∧ rel x y ⇒ p y }

PSTATE and PST

PSTATE and PST
The signature of preorder-respecting state monads

PSTATE : rel:preorder state

 → a:Type
 → wp:((a → state → Type0) → state → Type0)

 → Effect

PSTATE and PST
The signature of preorder-respecting state monads

PSTATE : rel:preorder state

 → a:Type
 → wp:((a → state → Type0) → state → Type0)

 → Effect

We added PSTATE into the effect hierarchy of F* via STATE

PSTATE and PST
The signature of preorder-respecting state monads

PSTATE : rel:preorder state

 → a:Type
 → wp:((a → state → Type0) → state → Type0)

 → Effect

Note: Unfortunately, at the moment we can't define

But we can make sub-effecting work for instances of PSTATE!

sub_effect (forall state rel . Pure ⇝ PSTATE rel)

We added PSTATE into the effect hierarchy of F* via STATE

PSTATE and PST

Analogously to STATE, we again use syntactic sugar

PST : rel:preorder state
 → a:Type
 → pre:(state → Type0)

 → post:(state → a → state → Type0)
 → Effect

The signature of preorder-respecting state monads

PSTATE : rel:preorder state

 → a:Type
 → wp:((a → state → Type0) → state → Type0)

 → Effect

Operations

get and put

get and put

val get : #rel:preorder state
 → PST rel state (fun _ → True)

 (fun s0 s s1 → s0 = s ∧ s = s1)

get and put

val get : #rel:preorder state
 → PST rel state (fun _ → True)

 (fun s0 s s1 → s0 = s ∧ s = s1)

 pre and post are exactly as for STATE and ST

get and put

val get : #rel:preorder state
 → PST rel state (fun _ → True)

 (fun s0 s s1 → s0 = s ∧ s = s1)

val put : #rel:preorder state
 → x:state

 → PST rel unit (fun s0 → rel s0 x)

 (fun _ _ s1 → s1 = x)

 pre and post are exactly as for STATE and ST

get and put

val get : #rel:preorder state
 → PST rel state (fun _ → True)

 (fun s0 s s1 → s0 = s ∧ s = s1)

val put : #rel:preorder state
 → x:state

 → PST rel unit (fun s0 → rel s0 x)

 (fun _ _ s1 → s1 = x)

the change wrt. STATE and ST

val put : #rel:preorder state
 → x:state

 → PST rel unit (fun s0 → rel s0 x)

 (fun _ _ s1 → s1 = x)

 pre and post are exactly as for STATE and ST

■-modality in

■-modality in

We introduce an uninterpreted function symbol

val ■ : #rel:preorder state

 → p:stable_predicate rel

 → Type0

■-modality in

We introduce an uninterpreted function symbol

val ■ : #rel:preorder state

 → p:stable_predicate rel

 → Type0

We assume logical axioms, e.g., functoriality:

forall p p' . (forall s . p s ⇒ p' s) ⇒ (■ p ⇒ ■ p')

■-modality in

We introduce an uninterpreted function symbol

val ■ : #rel:preorder state

 → p:stable_predicate rel

 → Type0

We assume logical axioms, e.g., functoriality:

forall p p' . (forall s . p s ⇒ p' s) ⇒ (■ p ⇒ ■ p')

Two readings of ■ p :  

 p held at some past state of an PSTATE computation

 p holds at all states reachable from the current with PSTATE

witness and recall

witness and recall

val witness : #rel:preorder state
 → p:stable_predicate rel

 → PST rel unit (fun s0 → p s0)
 (fun s0 _ s1 → s0 = s1 ∧ ■ p)

witness and recall

val witness : #rel:preorder state
 → p:stable_predicate rel

 → PST rel unit (fun s0 → p s0)
 (fun s0 _ s1 → s0 = s1 ∧ ■ p)

val recall : #rel:preorder state
 → p:stable_predicate rel
 → PST rel unit (fun _ → ■ p)
 (fun s0 _ s1 → s0 = s1 ∧ p s1)

Examples

Examples

Examples

• Recalling that allocated references remain allocated

• using FStar.Heap.heap

(need a source of freshness for alloc)

using our own heap type

(source of freshness built into the heap)

Examples

• Recalling that allocated references remain allocated

• using FStar.Heap.heap

(need a source of freshness for alloc)

using our own heap type

(source of freshness built into the heap)

• Immutable references and other preorders

Examples

• Recalling that allocated references remain allocated

• using FStar.Heap.heap

(need a source of freshness for alloc)

using our own heap type

(source of freshness built into the heap)

• Immutable references and other preorders

• Monotonic references

Examples

• Recalling that allocated references remain allocated

• using FStar.Heap.heap

(need a source of freshness for alloc)

using our own heap type

(source of freshness built into the heap)

• Immutable references and other preorders

• Monotonic references

Temporarily ignoring the constraint on put via snapshots

Our heap and ref types

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

 freshness counter
The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

We can define sel and upd and gen_fresh operations

 freshness counter
The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat
 both ops. have (r ∈ h)
 refinements on references

We can define sel and upd and gen_fresh operations

 freshness counter
The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat
 both ops. have (r ∈ h)
 refinements on references

We can define sel and upd and gen_fresh operations

 freshness counter
The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

and prove expected properties, e.g.:

r <> r' ⇒ sel (upd h r x) r' = sel h r'

Our heap and ref types

The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat
 both ops. have (r ∈ h)
 refinements on references

We can define sel and upd and gen_fresh operations

 freshness counter
The heap and ref types

let heap = h:(nat * (nat → option (a:Type0 & a)))
 { ... }

let ref a = nat

and prove expected properties, e.g.:

r <> r' ⇒ sel (upd h r x) r' = sel h r'

 Goal: use this heap as drop-in replacement for F*'s heap

 (but in F*'s heap, sel and upd don't have (r ∈ h) refinements)

• change the type of refs. to (let ref a = nat * a)

• make use of the presence LEM in WPs for checking (r ∈ h)

Allocated references example

Allocated references example
The type of refs. and the preorder for AllocST

let ref a = r:(Heap.ref a){ ■ (fun h → r ∈ h) }

let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1

AllocST a pre post = PST rel a pre post

Allocated references example
The type of refs. and the preorder for AllocST

let ref a = r:(Heap.ref a){ ■ (fun h → r ∈ h) }

let rel h0 h1 = forall a r . r ∈ h0 ⇒ r ∈ h1

AllocST a pre post = PST rel a pre post

AllocST operations crucially use witness and recall, e.g.,

let read #a (r:ref a) =

 let h = get () in

 recall (fun h → r ∈ h) ;

 sel h r

Snapshots

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s_rel (rel:preorder state) s0 s1 =

 match (snd s0) (snd s1) with

 | None None ⇒ rel (fst s0) (fst s1)

 | None (Some s) ⇒ rel (fst s0) s

 | (Some s) None ⇒ rel s (fst s1)

 | (Some s0') (Some s1') ⇒ rel s0' s1'

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s_rel (rel:preorder state) s0 s1 =

 match (snd s0) (snd s1) with

 | None None ⇒ rel (fst s0) (fst s1)

 | None (Some s) ⇒ rel (fst s0) s

 | (Some s) None ⇒ rel s (fst s1)

 | (Some s0') (Some s1') ⇒ rel s0' s1'

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s_rel (rel:preorder state) s0 s1 =

 match (snd s0) (snd s1) with

 | None None ⇒ rel (fst s0) (fst s1)

 | None (Some s) ⇒ rel (fst s0) s

 | (Some s) None ⇒ rel s (fst s1)

 | (Some s0') (Some s1') ⇒ rel s0' s1'

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s_rel (rel:preorder state) s0 s1 =

 match (snd s0) (snd s1) with

 | None None ⇒ rel (fst s0) (fst s1)

 | None (Some s) ⇒ rel (fst s0) s

 | (Some s) None ⇒ rel s (fst s1)

 | (Some s0') (Some s1') ⇒ rel s0' s1'

Snapshots
We first define snaphsot-capable state as

let s_state state = state * option state

The snaphsot-capable preorder is indexed by rel on state

let s_rel (rel:preorder state) s0 s1 =

 match (snd s0) (snd s1) with

 | None None ⇒ rel (fst s0) (fst s1)

 | None (Some s) ⇒ rel (fst s0) s

 | (Some s) None ⇒ rel s (fst s1)

 | (Some s0') (Some s1') ⇒ rel s0' s1'

read and write

read and write
val read : #rel:preorder state
 → SST rel state
 (fun s0 → True)

 (fun s0 s s1 → fst s0 = s ∧ s = fst s1 ∧
 snd s0 = snd s1)
let read #rel x = ...

read and write

val write : #rel:preorder state
 → x:state
 → SST rel unit
 (fun s0 → s_rel rel s0 (x,snd s0))
 (fun s0 _ s1 → s1 = (x,snd s0))
let write #rel x = ...

val read : #rel:preorder state
 → SST rel state
 (fun s0 → True)

 (fun s0 s s1 → fst s0 = s ∧ s = fst s1 ∧
 snd s0 = snd s1)
let read #rel x = ...

witness and recall

witness and recall
val witness : #rel:preorder state
 → p:stable_predicate rel

 → SST rel unit (fun s0 → p (fst s0) ∧
 snd s0 = None)
 (fun s0 _ s1 → s0 = s1 ∧ ■ p)
let witness #rel p = ...

witness and recall
val witness : #rel:preorder state
 → p:stable_predicate rel

 → SST rel unit (fun s0 → p (fst s0) ∧
 snd s0 = None)
 (fun s0 _ s1 → s0 = s1 ∧ ■ p)
let witness #rel p = ...

val recall : #rel:preorder state
 → p:stable_predicate rel
 → SST rel unit (fun s0 → ■ p ∧ snd s0 = None)
 (fun s0 _ s1 → s0 = s1 ∧
 p (fst s1))
let recall #rel p = ...

snap and ok

snap and ok
val snap : #rel:preorder state
 → SST rel unit
 (fun s0 → snd s0 = None)
 (fun s0 _ s1 → fst s0 = fst s1 ∧
 snd s1 = Some (fst s0))
let snap #rel = ...

snap and ok
val snap : #rel:preorder state
 → SST rel unit
 (fun s0 → snd s0 = None)
 (fun s0 _ s1 → fst s0 = fst s1 ∧
 snd s1 = Some (fst s0))
let snap #rel = ...

val ok : #rel:preorder state
 → SST rel unit
 (fun s0 → exists s . snd s0 = Some s ∧
 rel s (fst s0))
 (fun s0 _ s1 → fst s0 = fst s1 ∧
 snd s1 = None)
let ok #rel = ...

Example use of SST

Example use of SST

x0 x1

y0

y1

• Implementing a 2D point using two memory locations

• E.g., want to enforce that can only move along some line

A glimpse of the formal metatheory

PSTATE formally

PSTATE formally

We work with a small calculus based on EMF* from DM4F

 t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...

 e, φ | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...

 | return e | bind e1 x:t.e2

 | get e | put e | witness e | recall e

PSTATE formally

We work with a small calculus based on EMF* from DM4F

 t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...

 e, φ | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...

 | return e | bind e1 x:t.e2

 | get e | put e | witness e | recall e

Typing judgements have the form

 G ⊢ e : Tot t

 G ⊢ e : PSTATE t wp

PSTATE formally

We work with a small calculus based on EMF* from DM4F

 t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...

 e, φ | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...

 | return e | bind e1 x:t.e2

 | get e | put e | witness e | recall e

Typing judgements have the form

 G ⊢ e : Tot t

 G ⊢ e : PSTATE t wp

There is also a judgement for logical reasoning in WPs

 G | Φ ⊨ φ

PSTATE formally

We work with a small calculus based on EMF* from DM4F

 t, wp, ::= state | rel | x:t1 → Tot t2 | x:t1 → PSTATE t2 wp | ...

 e, φ | x | fun x:t → e | e1 e2 | (e1,e2) | fst e | ...

 | return e | bind e1 x:t.e2

 | get e | put e | witness e | recall e

Typing judgements have the form

 G ⊢ e : Tot t

 G ⊢ e : PSTATE t wp

There is also a judgement for logical reasoning in WPs

 G | Φ ⊨ φ nat. deduction for classical predicate logic

Operational semantics

Operational semantics

Small-step call-by-value reduction relation

 (Φ,s,e) -------------→ (Φ',s',e')

where

• Φ is a finite set of (witnessed) stable predicates

• s is a value of type state

• e is an expression

Operational semantics

Small-step call-by-value reduction relation

 (Φ,s,e) -------------→ (Φ',s',e')

where

• Φ is a finite set of (witnessed) stable predicates

• s is a value of type state

• e is an expression

Examples of reduction rules

 (Φ,s,put v) -------------→ (Φ,v,return ())

 (Φ,s,witness v) -------------→ (Φ ∪ {v},s,return ())

Progress thm. for PSTATE

Progress thm. for PSTATE

∀ f t wp .

 ⊢ f : PSTATE t wp

 ⇒

 1. ∃ v . f = return v

 ∨

 2. ∀ Φ s . ∃ Φ' s' f' . (Φ,s,f) -------------→ (Φ',s',f')

Preservation thm. for PSTATE

∀ f t wp Φ s Φ' s' f'.
 ⊢ f : PSTATE t wp ∧ (Φ,s) wf ∧

 (Φ,s,f) -------------→ (Φ',s',f')

 ⇒
 ∀ post . ■ Φ ⊨ wp post s

 ⇒
 Φ ⊆ Φ' ∧ (Φ',s') wf ∧

 ■ Φ ⊨ rel s s' ∧

 ∃ wp' . ⊢ f' : PSTATE t wp' ∧
 ■ Φ' ⊨ wp' post s'

Preservation thm. for PSTATE

∀ f t wp Φ s Φ' s' f'.
 ⊢ f : PSTATE t wp ∧ (Φ,s) wf ∧

 (Φ,s,f) -------------→ (Φ',s',f')

 ⇒
 ∀ post . ■ Φ ⊨ wp post s

 ⇒
 Φ ⊆ Φ' ∧ (Φ',s') wf ∧

 ■ Φ ⊨ rel s s' ∧

 ∃ wp' . ⊢ f' : PSTATE t wp' ∧
 ■ Φ' ⊨ wp' post s'

 ■ Φ = ■ (fun x → φ1 x ∧ ... ∧ φn x)

Preservation thm. for PSTATE

∀ f t wp Φ s Φ' s' f'.
 ⊢ f : PSTATE t wp ∧ (Φ,s) wf ∧

 (Φ,s,f) -------------→ (Φ',s',f')

 ⇒
 ∀ post . ■ Φ ⊨ wp post s

 ⇒
 Φ ⊆ Φ' ∧ (Φ',s') wf ∧

 ■ Φ ⊨ rel s s' ∧

 ∃ wp' . ⊢ f' : PSTATE t wp' ∧
 ■ Φ' ⊨ wp' post s'

 ■ Φ = ■ (fun x → φ1 x ∧ ... ∧ φn x)

Preservation thm. for PSTATE The proof requires an inversion property (in empty context)

 ⊨ ■ φ ⇒ ■ ψ
 ⊨ forall x . φ x ⇒ ψ x

 We justify (■ - inv) via a cut-elimination in sequent calculus

• where we have a single derivation rule for ■

 G ⊢ Φ1
 G ⊢ Φ2
 G ,x | Φ1 ,φ1 x , . . . ,φn x ⊢ ψ1 x , . . . ,ψm x ,Φ2

 G | Φ1 ,■ φ1 , . . . ,■ φn ⊢ ■ ψ1 , . . . ,■ ψm , Φ2

 Future work: model theory of ■

(■ - inv)

Conclusion

Conclusion

In this talk we covered:

• preorder-respecting state monads in F*
• their formal metatheory

• some of the examples of these monads

Conclusion

Ongoing and future work:

• change F*'s libraries to use PSTATE

• PSTATE in DM4F setting? (how to reify it safely?)

• model theory of ■

• categorical semantics of Dijkstra monads (rel. monads.)

In this talk we covered:

• preorder-respecting state monads in F*
• their formal metatheory

• some of the examples of these monads

Dijkstra monad T in CT?

Dijkstra monad T in CT?

The Kleisli extension of a Dijkstra monad

Type formation rule for a Dijkstra monad

The unit of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` e : t
G ` return e : T t (WP.return e)

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [9, Section 1.8], this characterisation is a fibred analogue of a

category V having a terminal object precisely when the unique functor ! : V �! 1 has

a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` t : Type G ` wp : WP A
G ` T t wp : Type

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [9, Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

Dijkstra monad T in CT?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fib

split

(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

...

B!

cod

,,

V

p

##

{�}

{{

Poo

a a

B

1

OO

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

We'll work in the setting of closed comprehension cats., i.e.,

• B models contexts

• V models types in context

• terms in context Γ are modeled as global elements in V[[Γ]]

• P is fully faithful

Dijkstra monad T in CT?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fib

split

(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

...

B!

cod

,,

V

p

##

{�}

{{

Poo

a a

B

1

OO

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

For modeling Dijkstra monads, we assume:

• a split fibred monad WP : p → p

• a functor T : V → V  
 s.t. p ◦ T = { --- } ◦ WP  
 T preserves Cartesian morphisms on-the-nose

 
 

 
Can we model the unit and Kleisli ext. for T in known terms?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` e : t
G ` return e : T t (WP.return e)

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

Dijkstra monad T in CT?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fib

split

(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

...

B!

cod

,,

V

p

##

{�}

{{

Poo

a a

B

1

OO

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

For modeling Dijkstra monads, we assume:

• a split fibred monad WP : p → p

• a functor T : V → V  
 s.t. p ◦ T = { --- } ◦ WP  
 T preserves Cartesian morphisms on-the-nose

 
 

 
Can we model the unit and Kleisli ext. for T in known terms?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` e : t
G ` return e : T t (WP.return e)

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

dependency on WP

Dijkstra monad T in CT?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fib

split

(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

...

B!

cod

,,

V

p

##

{�}

{{

Poo

a a

B

1

OO

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

For modeling Dijkstra monads, we assume:

• a split fibred monad WP : p → p

• a functor T : V → V  
 s.t. p ◦ T = { --- } ◦ WP  
 T preserves Cartesian morphisms on-the-nose

 
 

 
Can we model the unit and Kleisli ext. for T in known terms?

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

G ` e : t
G ` return e : T t (WP.return e)

G ` M : T t1 wp1 G ` t2 G,x : t1 ` N : T t2 wp2
G ` bind e1 x.e2 : T t2 (WP.bind wp1 x.wp2)

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

dependency on WP

closed under substitution

Dijkstra monad T in B→

Dijkstra monad T in B→

The unit of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A} //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
{WP.hA}

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

Dijkstra monad T in B→

The Kleisli extension of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A}

id{A}

✏✏

f // {T (B)}

pT (B)

✏✏

{T (A)}

pT (A)

✏✏

// {T (B)}

pT (B)

✏✏

⇣ ⌘⇤

{A}
{g}

// {WP(B)} {WP(A)}
{WP.(�)⇤(g)}

// {WP(B)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A} T.hA //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
WP.hA

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

The unit of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A} //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
{WP.hA}

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

Dijkstra monad T in B→

The Kleisli extension of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A}

id{A}

✏✏

f // {T (B)}

pT (B)

✏✏

{T (A)}

pT (A)

✏✏

// {T (B)}

pT (B)

✏✏

⇣ ⌘⇤

{A}
{g}

// {WP(B)} {WP(A)}
{WP.(�)⇤(g)}

// {WP(B)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A} T.hA //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
WP.hA

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

The unit of a Dijkstra monad

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

{A} //

id{A}

✏✏

{T (A)}

pT (A)

✏✏

hA :

{A}
{WP.hA}

// {WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

 This data and the associated laws are

 precisely those for a relative monad

 on

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

bT : V �! im({�})/{�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [? , Section 1.8], this characterisation is a fibred analogue of

a category V having a terminal object precisely when the unique functor ! : V �! 1
has a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

J : V �! im({�})/{�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [? , Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [9, Section 1.8], this characterisation is a fibred analogue of a

category V having a terminal object precisely when the unique functor ! : V �! 1 has

a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

bT : V �! im({�}) # {�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

J : V �! im({�}) # {�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [9, Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

12 Chapter 2. Semantic preliminaries

sketch the definitions used to prove both directions. First, in the if -direction, we define

the terminal object functor 1 : B �! V by mapping an object X in B to the terminal

object 1X over X ; and by mapping a morphism f : X �!Y in B to the composite mor-

phism 1X
=�! f ⇤(1Y)

f (1Y)�! 1Y . In the opposite direction, we define the terminal object

in the fibre over an object X in B to be 1X . The preservation of terminal objects by

reindexing follows from the preservation of Cartesian morphisms by 1.

As noted by Jacobs [9, Section 1.8], this characterisation is a fibred analogue of a

category V having a terminal object precisely when the unique functor ! : V �! 1 has

a right adjoint. Here, the terminal object in Fibsplit(B) is given by idB : B �! B .

Definition 2.2.30. A split fibration p : V �! B is called a split comprehension cate-

gory with unit if i) p comes equipped with a split terminal object functor

1 : B �! V and ii) this terminal object functor has a right adjoint {�} : V �! B ,

called the comprehension functor, as illustrated in the diagram below.

V

p

##

{�}

{{

a a

B

1

OO

bT : V �! im({�}) # {�} bT (A) def
= {T (A)}

pT (A)
�����!{WP(A)}

J : V �! im({�}) # {�} J(A) def
= {A}

id{A}
�����!{A}

Proposition 2.2.31. Given a split comprehension category with unit p : V �! B , then

there exists a functor P : V �! B! such that p = cod �P and P sends the chosen

Cartesian morphisms in V to pullback squares in B!.

Proof. Following [9, Section 10.4], we define the functor P : V �! B! on objects

by mapping an object A in V to the morphism {A} = p(1{A})
p(e1a{�}

A)
�! p(A); and by

