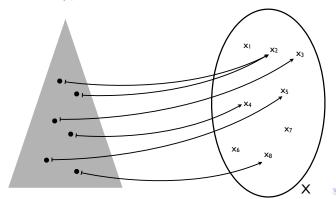
When Is a Container a Comonad?

Danel Ahman, University of Cambridge James Chapman, Tarmo Uustalu, Institute of Cybernetics

Tallinn, 28 March 2012

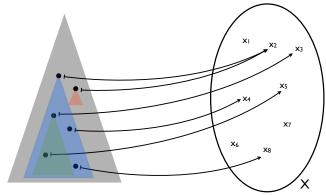
Container syntax of datatypes

- Many datatypes can be represented in terms of shapes and positions in shapes
 - Examples: lists, streams, colists, trees, etc.
 - Non-examples: sets, bags
- Containers provide us with a handy syntax to analyze such datatypes



Directing containers?

- Containers often exhibit a natural notion of subshape given by positions in shapes
- Natural questions arise:
 - What is the appropriate specialization of containers?
 - ② Does this admit a nice categorical theory?



Directed containers

A directed container is given by

```
• S : Set (shapes)
• P : S \rightarrow Set (positions)
```

and

•
$$\downarrow$$
: $\Pi s: S. Ps \rightarrow S$ (subshape)
• $\circ: \Pi \{s: S\}. Ps$ (root position)
• $\oplus: \Pi \{s: S\}. \Pi p: Ps. P(s \downarrow p) \rightarrow Ps$

such that

- $\forall \{s\}. s \downarrow o = s$, • $\forall \{s, p, p'\}. s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$,
- $\forall \{s, p\}, p \oplus \{s\} \circ = p$,
- $\forall \{s, p\}. o\{s\} \oplus p = p$,
- $\bullet \ \forall \{s, p, p', p''\}. (p \oplus \{s\} \ p') \oplus p'' = p \oplus (p' \oplus p'').$

Directed containers

A directed container is given by

```
• S : Set (shapes)
• P : S \rightarrow Set (positions)
```

and

```
• \downarrow: \Pi s: S. P s \rightarrow S (subshape)

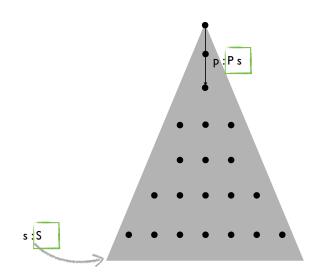
• \circ: \Pi \{s: S\}. P s (root position)

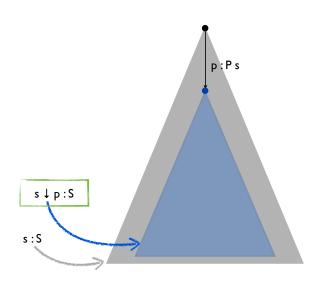
• \oplus: \Pi \{s: S\}. \Pi p: P s. P (s \downarrow p) \rightarrow P s
```

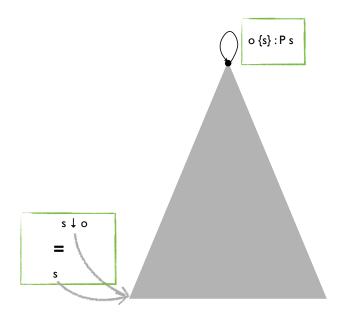
such that

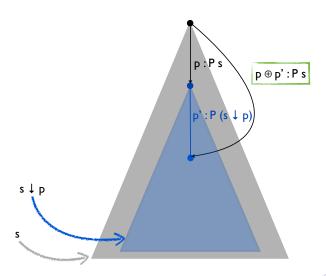
- $\forall \{s\}. s \downarrow o = s$,
- $\forall \{s, p, p'\}. s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p',$
- $\forall \{s,p\}. p \oplus \{s\} o = p$,
- $\forall \{s, p\}. o\{s\} \oplus p = p$,
- $\forall \{s, p, p', p''\}. (p \oplus \{s\} p') \oplus p'' = p \oplus (p' \oplus p'').$

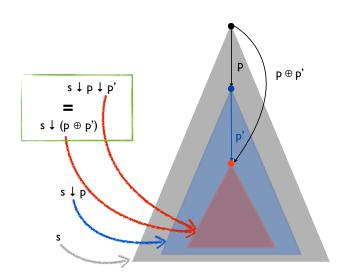
(subshape positions)

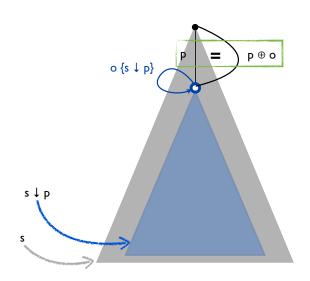


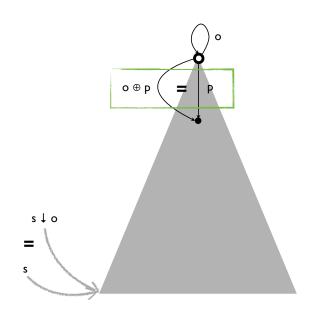


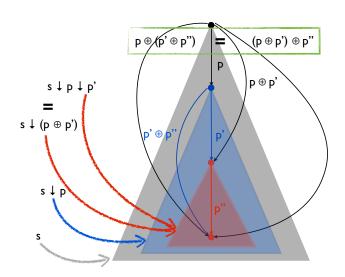










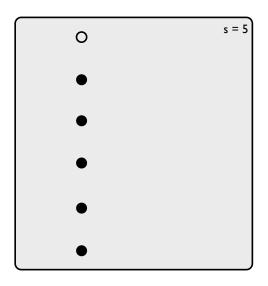


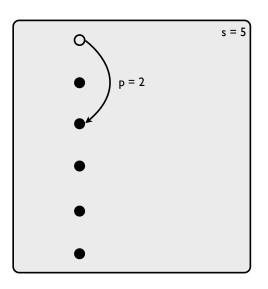
Non-empty lists and streams

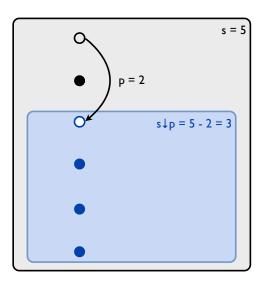
Non-empty lists

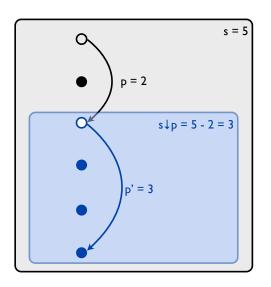
•
$$S = \text{Nat}$$
 (shapes)
• $P s = [0..s]$ (positions)
• $s \downarrow p = s - p$ (subshapes)
• $o = 0$ (root)
• $p \oplus \{s\} p' = p + p'$ (subshape positions)

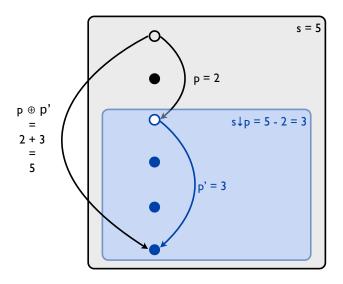
• Streams are represented similarly with S=1 and $P*=\mathsf{Nat}$











Non-empty lists with a focus

- Zippers (tree-like datastructures with a focus position) consist of a context (path from the root to the focus position, with side subtrees) and a focal subtree
- Non-empty lists with a focus

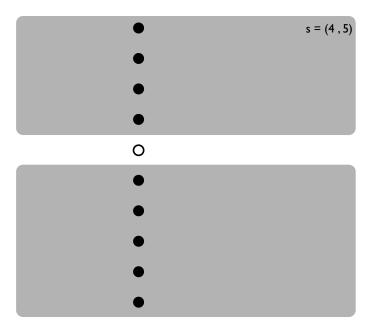
•
$$S = \text{Nat} \times \text{Nat}$$
 (shapes)

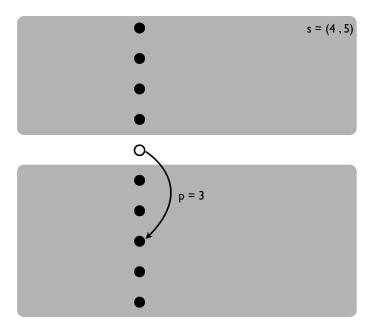
•
$$P(s_0, s_1) = [-s_0...s_1] = [-s_0...-1] \cup [0...s_1]$$
 (positions)

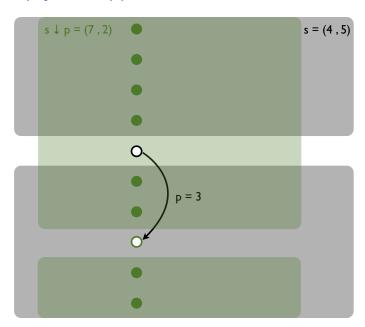
•
$$(s_0, s_1) \downarrow p = (s_0 + p, s_1 - p)$$
 (subshapes)

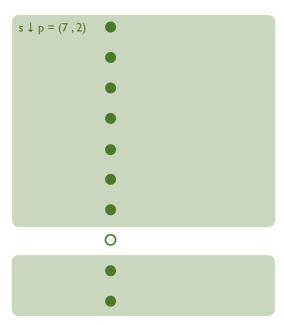
•
$$o(s_0, s_1) = 0$$
 (root)

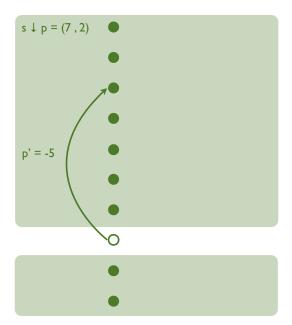
•
$$p \oplus \{s_0, s_1\} p' = p + p'$$
 (subshape positions)

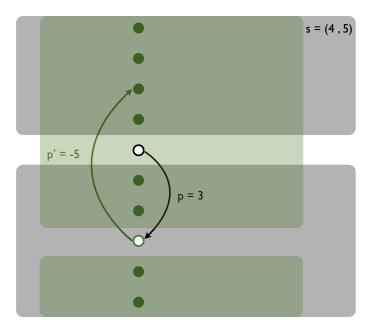


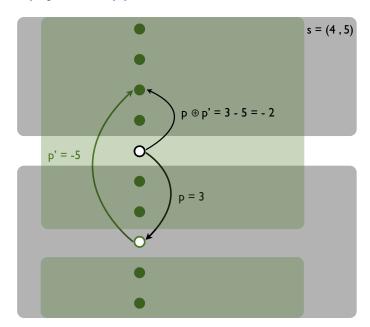












Directed container morphisms

- A directed container morphism $t \triangleleft q$ between $(S \triangleleft P \land b \land b)$ and $(S' \triangleleft P' \land b \land b)$ is given by
 - $t: S \rightarrow S'$
 - $q: \Pi\{s:S\}.P'(ts) \to Ps$

such that

- $\forall \{s, p\}. t(s \downarrow q p) = t s \downarrow' p$
- $\forall \{s\}. \circ \{s\} = q (o' \{t s\})$
- $\bullet \ \forall \{s, p, p'\}. \ q \ p \oplus \{s\} \ q \ p' = q \ (p \oplus ' \{t \ s\} \ p')$
- Identity id $^{c} = id \{S\} \triangleleft \lambda \{s\}$. $id \{P s\}$
- $\begin{array}{l} \bullet \; \mathsf{Composition} \; (t' \lhd q') \circ^{\operatorname{lc}} \; (t \lhd q) = \\ &= (t' \circ t) \lhd (\lambda \{s\}. \, q \, \{s\} \circ q' \, \{t \, s\}) \end{aligned}$
- Directed containers form a category

 Cont

Directed container morphisms

- A directed container morphism $t \triangleleft q$ between $(S \triangleleft P, \downarrow, o, \oplus)$ and $(S' \triangleleft P', \downarrow', o', \oplus')$ is given by
 - $t: S \rightarrow S'$
 - $q: \Pi\{s:S\}.P'(ts) \to Ps$

such that

- $\forall \{s, p\}. t (s \downarrow q p) = t s \downarrow' p$
- $\forall \{s\}. \circ \{s\} = q (o' \{t s\})$
- $\forall \{s, p, p'\}. q p \oplus \{s\} q p' = q (p \oplus' \{t s\} p')$
- Identity $id^{dc} = id \{S\} \triangleleft \lambda \{s\}$. $id \{P s\}$
- $\begin{array}{l} \bullet \;\; \mathsf{Composition} \;\; (t' \lhd q') \circ^{\mathrm{dc}} \; (t \lhd q) = \\ &= (t' \circ t) \lhd (\lambda \{s\}. \, q \, \{s\} \circ q' \, \{t \, s\}) \end{array}$
- Directed containers form a category DCont

Interpretation (semantics) of directed containers

• Any directed container $(S \triangleleft P, \downarrow, \circ, \oplus)$ defines a functor command $[S \triangleleft P, \downarrow, \circ, \oplus]^{\operatorname{c}} = (D, \varepsilon, \delta)$ where

•
$$D : \mathsf{Set} \to \mathsf{Set}$$

 $D X = \Sigma s : S \cdot P s \to X$
 $D f (s, v) = (s, f \circ v)$

- $\varepsilon : \forall \{X\}.(\Sigma s : S. P s \to X) \to X$ $\varepsilon (s, v) = v (o \{s\})$
- $\delta: \forall \{X\}. (\Sigma s: S. P s \to X) \to \Sigma s: S. P s \to \Sigma s': S. P s' \to X$ $\delta(s, v) = (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus \{s\} p')))$

Interpretation (semantics) of directed containers

• Any directed container $(S \lhd P, \downarrow, o, \oplus)$ defines a functor/comonad $[S \lhd P, \downarrow, o, \oplus]^{dc} = (D, \varepsilon, \delta)$ where

•
$$D : \mathsf{Set} \to \mathsf{Set}$$

 $D X = \Sigma s : S . P s \to X$
 $D f (s, v) = (s, f \circ v)$

•
$$\varepsilon : \forall \{X\}.(\Sigma s : S. P s \to X) \to X$$

 $\varepsilon (s, v) = v (o \{s\})$

•
$$\delta: \forall \{X\}. (\Sigma s: S. P s \to X) \to \Sigma s: S. P s \to \Sigma s': S. P s' \to X$$

$$\delta(s, v) = (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus \{s\} p')))$$

Interpretation of directed container morphisms

- Any directed container morphism $t \triangleleft q$ between $(S \triangleleft P \sqcup Q \sqcup Q)$ and $(S' \triangleleft P' \sqcup Q \sqcup Q)$ defines a natural transformation compand morphism $[\![t \triangleleft q]\!]^{\operatorname{c}}$ between $[\![S \triangleleft P \sqcup Q \sqcup Q]\!]^{\operatorname{c}}$ and $[\![S' \triangleleft P' \sqcup Q \sqcup Q]\!]^{\operatorname{c}}$
 - $\llbracket t \lhd q \rrbracket$ $^{\mathrm{c}} : \forall \{X\}. (\Sigma s : S. P s \to X) \to \\ \llbracket t \lhd q \rrbracket$ $^{\mathrm{c}} (s, v) = (t s, v \circ q \{s\})$ $\Sigma s' : S'. P' s' \to X$
- [-] c preserves the identities and composition
- $[-]^{c}$ is a functor from [] Cont to Endo [] Cond[] (Set)

Interpretation of directed container morphisms

- Any directed container morphism $t \triangleleft q$ between $(S \triangleleft P, \downarrow, o, \oplus)$ and $(S' \triangleleft P', \downarrow', o', \oplus')$ defines a natural transformation/comonad morphism $\llbracket t \triangleleft q \rrbracket^{\mathrm{dc}}$ between $\llbracket S \triangleleft P, \downarrow, o, \oplus \rrbracket^{\mathrm{dc}}$ and $\llbracket S' \triangleleft P', \downarrow', o', \oplus' \rrbracket^{\mathrm{dc}}$
 - $\llbracket t \lhd q \rrbracket^{\operatorname{dc}} : \forall \{X\}. (\Sigma s : S. P s \to X) \to \\ \llbracket t \lhd q \rrbracket^{\operatorname{dc}} (s, v) = (t s, v \circ q \{s\})$ $\Sigma s' : S'. P' s' \to X$
- ullet $[-]^{dc}$ preserves the identities and composition
- $[-]^{dc}$ is a functor from **DCont** to Endoy **Cmnds(Set)**

Interpretation is fully faithful

- A natural transformation compared morphism τ between $[S \lhd P]$ and $[S' \lhd P']$ defines a directed container morphism $\neg \tau \neg c = (t \lhd q)$ between $(S \lhd P)$ and $(S' \lhd P')$
 - $t: S \rightarrow S'$ $ts = \operatorname{fst} (\tau \{Ps\} (s, \operatorname{id}))$
 - $q:\Pi\{s:S\}.P'(ts)\rightarrow Ps$ $q\{s\}=\operatorname{snd}\left(\tau\{Ps\}(s,\operatorname{id})\right)$
- $\lceil \tau \rceil^{dc}$ satisfies,
 - $\bullet \ \lceil \llbracket h \rrbracket^{\text{dc} \neg \text{dc}} = h$
 - $\tau^{\neg c} = \tau'^{\neg c}$ implies $\tau = \tau'$
- $[-]^{c}$ is a fully faithful functor

Interpretation is fully faithful

- A natural transformation comonad morphism τ between $[S \lhd P, \downarrow, o, \oplus]^{\mathrm{dc}}$ and $[S' \lhd P', \downarrow', o', \oplus']^{\mathrm{dc}}$ defines a directed container morphism $\ulcorner \tau \urcorner^{\mathrm{dc}} = (t \lhd q)$ between $(S \lhd P, \downarrow, o, \oplus)$ and $(S' \lhd P', \downarrow', o', \oplus')$
 - $t: S \rightarrow S'$ $ts = \operatorname{fst} (\tau \{Ps\} (s, \operatorname{id}))$
 - $q : \Pi\{s : S\}. P'(ts) \to Ps$ $q\{s\} = \operatorname{snd}(\tau\{Ps\}(s, id))$
- $\tau^{\neg dc}$ satisfies,
 - $\bullet \ \lceil \llbracket h \rrbracket^{\mathrm{dc} \, \neg \mathrm{dc}} = h$
 - $\tau^{\neg dc} = \tau'^{\neg dc}$ implies $\tau = \tau'$
- $[-]^{dc}$ is a fully faithful functor

Containers \cap comonads = directed containers

• Any comonad (D, ε, δ) , such that $D = [S \triangleleft P]^c$, determines a directed container

$$\lceil (D, \varepsilon, \delta), S \lhd P \rceil = (S \lhd P, \downarrow, o, \oplus)$$
 where

- $s \downarrow p = \operatorname{snd}(t^{\delta} s) p$
- $\bullet \circ \{s\} = q^{\varepsilon}\{s\} *$
- $p \oplus \{s\} p' = q^{\delta} \{s\} (p, p')$

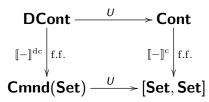
using the container morphisms

- $t^{\varepsilon} \lhd q^{\varepsilon} : S \lhd P \to \mathsf{Id}^{c}$ $t^{\varepsilon} \lhd q^{\varepsilon} = \mathsf{\Gamma} \mathsf{e} \circ \varepsilon^{\mathsf{\neg} c}$
- $t^{\delta} \lhd q^{\delta} : S \lhd P \to (S \lhd P) \cdot {}^{c} (S \lhd P)$ • $t^{\delta} \lhd q^{\delta} = {}^{r} m \{S \lhd P\} \{S \lhd P\} \circ \delta^{{}^{r} c}$
- It is forced that
 - ullet $\forall \{s\}.\ t^arepsilon s = *$ and $orall \{s\}.\ \mathsf{fst}\,(t^\delta s) = s$

Containers \cap comonads = directed containers ctd.

- For any comonad (D, ε, δ) , such that $D = [S \triangleleft P]^c$,
 - $\llbracket \lceil (D, \varepsilon, \delta), S \triangleleft P \rceil \rrbracket^{dc} = (D, \varepsilon, \delta)$
- For any directed container $(S \triangleleft P, \downarrow, o, \oplus)$,
 - $\lceil \llbracket S \lhd P, \downarrow, o, \oplus \rrbracket^{dc}, S \lhd P \rceil = (S \lhd P, \downarrow, o, \oplus)$

• The following is a pullback in CAT:



Constructions

- Coproduct of directed containers
- Cofree directed containers
- Focussing of a container
- Strict directed containers
- Composition of a strict and non-strict directed container
- Product of strict directed containers
- Distributive laws between directed containers

Conclusion

- Directed containers are a natural notion—cover a natural class of examples and admit an elegant theory
- They give a characterization of containers whose interpretation carries a comonad structure

Questions?

Extra material

Coproduct of directed containers

- Given directed containers $E_0 = (S_0 \triangleleft P_0, \downarrow_0, o_0, \oplus_0)$, $E_1 = (S_1 \triangleleft P_1, \downarrow_1, o_1, \oplus_1)$, their coproduct is $E = E_0 + E_1$ given as $(S \triangleleft P, \downarrow, o, \oplus)$ where
 - $S = S_0 + S_1$
 - $P(\inf s) = P_0 s$ $P(\inf s) = P_1 s$
 - $\operatorname{inl} s \downarrow p = \operatorname{inl} (s \downarrow_0 p)$ $\operatorname{inr} s \downarrow p = \operatorname{inr} (s \downarrow_1 p)$
 - $o\{\inf s\} = o_0\{s\}$ $o\{\inf s\} = o_1\{s\}$
 - $p \oplus \{\inf s\} p' = p \oplus_0 \{s\} p'$ $p \oplus \{\inf s\} p' = p \oplus_1 \{s\} p'$
- $[E_0 + E_1]^{dc} \cong [E_0]^{dc} + [E_1]^{dc}$

The cofree directed container

- Given a container $C = (S_0 \triangleleft P_0)$, the cofree directed container on it is $E = (S \triangleleft P, \downarrow, o, \oplus)$ where
 - $S = \nu Z. \Sigma s : S_0.P_0 s \to Z$,
 - $P = \mu Z. \lambda(s, v). 1 + \Sigma p : P_0 s. Z(v p),$
 - $o\{s, v\} = inl*,$
 - $(s, v) \downarrow \text{inl} * = (s, v),$ $(s, v) \downarrow \text{inr} (p, p') = v p \downarrow p',$
 - $\inf * \oplus \{s, v\} p'' = p''$, $\inf (p, p') \oplus \{s, v\} p'' = \inf (p, p' \oplus \{v p\} p'')$.
- $DX = \nu Z.X \times [C]^c Z$
 - ullet is the carrier of the cofree comonad on the functor $[\![\mathcal{C}]\!]^{\mathrm{c}}$
- Instead of ν , one could also use μ in S, to get the directed container representation of the cofree recursive comonad.

Focussing a container

• Given a container $C_0 = (S_0 \lhd P_0)$, we can focus it by defining a directed container $E = (S \lhd P, \downarrow, o, \oplus)$ where

•
$$S = \Sigma s : S_0. P_0 s$$

•
$$P(s, p) = P_0 s$$

• o
$$\{s, p\} = p$$

$$\bullet (s,p) \downarrow p' = (s,p')$$

$$\bullet \ p' \oplus \{s,p\} \, p'' = p''$$

• Focussed container interprets into the canonical comonad structure on $\partial \llbracket C \rrbracket^c \times \operatorname{Id}$ where ∂F denotes the derivative of F

Directed container from a monoid

- Any monoid (M, e, \bullet) gives a directed container $E = (S \lhd P, \downarrow, o, \oplus)$ by
 - *S* = 1
 - P* = M
 - $* \downarrow p = *$
 - $o\{*\} = e$
 - $\bullet \ p \oplus \{*\}p' = p \bullet p'$
- $\llbracket E \rrbracket^{\operatorname{dc}} X = \Sigma s : *. M \to X \cong M \to X$

Containers \cap Monads = ?

- Given a container $C = (S \triangleleft P)$
- The structure (η,μ) of a monad on $[\![S\lhd P]\!]^{\mathrm{c}}$ could be represented as
 - e : S (for the shape map for η)
 - • : $\Pi s: S.(Ps \to S) \to S$ (for the shape map for μ)
 - $\uparrow : \Pi\{s : S\}. \Pi v : Ps \rightarrow S.P(s \bullet v) \rightarrow Ps$ (for the position map for μ)
 - \uparrow : $\Pi\{s:S\}$. $\Pi v:Ps\to S$. $\Pi p:P(s\bullet v).P(v(v \setminus \{s\}p))$ (for the position map for μ)