
When Is a Container a Comonad?

Danel Ahman, University of Cambridge
James Chapman, Tarmo Uustalu, Institute of Cybernetics

Tallinn, 28 March 2012

Container syntax of datatypes
Many datatypes can be represented in terms of shapes
and positions in shapes

Examples: lists, streams, colists, trees, etc.
Non-examples: sets, bags

Containers provide us with a handy syntax to analyze
such datatypes

X

x1 x2 x3

x4

x5

x6 x8

x7

Directing containers?

Containers often exhibit a natural notion of subshape
given by positions in shapes

Natural questions arise:

1 What is the appropriate specialization of containers?

2 Does this admit a nice categorical theory?

X

x1 x2 x3

x4

x5

x6 x8

x7

Directed containers
A directed container is given by

S : Set (shapes)
P : S → Set (positions)

and

↓: Πs : S .P s → S (subshape)
o : Π{s : S}.P s (root position)
⊕: Π{s : S}.Πp : P s.P (s ↓ p)→ P s

(subshape positions)

such that

∀{s}. s ↓ o = s,
∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,
∀{s, p}. p ⊕{s} o = p,
∀{s, p}. o{s} ⊕ p = p,
∀{s, p, p′, p′′}. (p ⊕{s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

Directed containers
A directed container is given by

S : Set (shapes)
P : S → Set (positions)

and

↓ : Πs : S .P s → S (subshape)
o : Π{s : S}.P s (root position)
⊕ : Π{s : S}.Πp : P s.P (s ↓ p)→ P s

(subshape positions)

such that

∀{s}. s ↓ o = s,
∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,
∀{s, p}. p ⊕{s} o = p,
∀{s, p}. o{s} ⊕ p = p,
∀{s, p, p′, p′′}. (p ⊕{s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

Directed containers illustrated

p : P s

s : S

Directed containers illustrated

p : P s

s : S

s ↓ p : S

Directed containers illustrated

o {s} : P s

s ↓ o

=

s

Directed containers illustrated

p : P s

p’ : P (s ↓ p)

p ⊕ p’ : P s

s ↓ p

s

Directed containers illustrated

p

p’

p ⊕ p’

s ↓ p

s

s ↓ (p ⊕ p’)

s ↓ p ↓ p’

=

Directed containers illustrated

p
o {s ↓ p}

p ⊕ o=

s ↓ p

s

Directed containers illustrated

po ⊕ p

o

=

s ↓ o

=

s

Directed containers illustrated

p

p’

p ⊕ p’

p’ ⊕ p’’

(p ⊕ p’) ⊕ p’’ p ⊕ (p’ ⊕ p’’)

p’’

=

s ↓ p

s

s ↓ (p ⊕ p’)

s ↓ p ↓ p’

=

Non-empty lists and streams
Non-empty lists

S = Nat (shapes)

P s = [0..s] (positions)

s ↓ p = s − p (subshapes)

o = 0 (root)

p ⊕ {s} p′ = p + p′ (subshape positions)

Streams are represented similarly with
S = 1 and P ∗ = Nat

Non-empty lists illustrated

s = 5

Non-empty lists illustrated

s = 5

p = 2

Non-empty lists illustrated

s = 5

s↓p = 5 - 2 = 3

p = 2

Non-empty lists illustrated

s = 5

p = 2

p’ = 3

s↓p = 5 - 2 = 3

Non-empty lists illustrated

s = 5

p = 2

p’ = 3

 p ⊕ p’
=

2 + 3
=
5

s↓p = 5 - 2 = 3

Non-empty lists with a focus

Zippers (tree-like datastructures with a focus position)
consist of a context (path from the root to the focus
position, with side subtrees) and a focal subtree

Non-empty lists with a focus

S = Nat× Nat (shapes)

P (s0, s1) = [−s0..s1] = [−s0..− 1] ∪ [0..s1] (positions)

(s0, s1) ↓ p = (s0 + p, s1 − p) (subshapes)

o {s0, s1} = 0 (root)

p ⊕ {s0, s1} p′ = p + p′ (subshape positions)

Non-empty list zippers illustrated

s = (4 , 5)

Non-empty list zippers illustrated

p = 3

s = (4 , 5)

Non-empty list zippers illustrated

p = 3

s = (4 , 5)s ↓ p = (7 , 2)

Non-empty list zippers illustrated

s ↓ p = (7 , 2)

Non-empty list zippers illustrated

p’ = -5

s ↓ p = (7 , 2)

Non-empty list zippers illustrated

p’ = -5

p = 3

s = (4 , 5)

Non-empty list zippers illustrated

p’ = -5

p = 3

p ⊕ p’ = 3 - 5 = - 2

s = (4 , 5)

Directed container morphisms
A directed container morphism t C q between
(S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′) is given by

t : S → S ′

q : Π{s : S}.P ′ (t s)→ P s

such that

∀{s, p}. t (s ↓ q p) = t s ↓′ p
∀{s}. o {s} = q (o′ {t s})
∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′)

Identity iddc = id {S}C λ{s}. id {P s}
Composition (t ′ C q′) ◦dc (t C q) =

= (t ′ ◦ t) C (λ{s}. q {s} ◦ q′ {t s})

Directed containers form a category DCont

Directed container morphisms
A directed container morphism t C q between
(S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′) is given by

t : S → S ′

q : Π{s : S}.P ′ (t s)→ P s

such that

∀{s, p}. t (s ↓ q p) = t s ↓′ p
∀{s}. o {s} = q (o′ {t s})
∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′)

Identity iddc = id {S}C λ{s}. id {P s}
Composition (t ′ C q′) ◦dc (t C q) =

= (t ′ ◦ t) C (λ{s}. q {s} ◦ q′ {t s})

Directed containers form a category DCont

Interpretation (semantics) of directed containers

Any directed container (S C P , ↓, o,⊕)

defines a functor���
���/comonad JS C P , ↓, o,⊕Kdc = (D, ε, δ)

where

D : Set→ Set

D X = Σs : S .P s → X

D f (s, v) = (s, f ◦ v)

ε : ∀{X}.(Σs : S .P s → X)→ X

ε (s, v) = v (o {s})

δ : ∀{X}. (Σs : S .P s → X)→
Σs : S .P s → Σs ′ : S .P s ′ → X

δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′)))

Interpretation (semantics) of directed containers

Any directed container (S C P , ↓, o,⊕)

defines a���
��functor/comonad JS C P , ↓, o,⊕Kdc = (D, ε, δ)

where

D : Set→ Set

D X = Σs : S .P s → X

D f (s, v) = (s, f ◦ v)

ε : ∀{X}.(Σs : S .P s → X)→ X

ε (s, v) = v (o {s})

δ : ∀{X}. (Σs : S .P s → X)→
Σs : S .P s → Σs ′ : S .P s ′ → X

δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′)))

Interpretation of directed container morphisms

Any directed container morphism t C q between

(S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′) defines

a natural transformation
(((

((((
((((

/comonad morphism Jt C qKdc

between JS C P , ↓, o,⊕Kdc and JS ′ C P ′, ↓′, o′,⊕′Kdc

Jt C qKdc : ∀{X}. (Σs : S .P s → X)→
Σs ′ : S ′.P ′ s ′ → X

Jt C qKdc (s, v) = (t s, v ◦ q {s})

J−Kdc preserves the identities and composition

J−Kdc is a functor from DCont to Endo���
��/Cmnds(Set)

Interpretation of directed container morphisms

Any directed container morphism t C q between

(S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′) defines

a
((((

(((
((((

(
natural transformation/comonad morphism Jt C qKdc

between JS C P , ↓, o,⊕Kdc and JS ′ C P ′, ↓′, o′,⊕′Kdc

Jt C qKdc : ∀{X}. (Σs : S .P s → X)→
Σs ′ : S ′.P ′ s ′ → X

Jt C qKdc (s, v) = (t s, v ◦ q {s})

J−Kdc preserves the identities and composition

J−Kdc is a functor from DCont to����Endo/Cmnds(Set)

Interpretation is fully faithful

A natural transformation
((((

((((
(((

/comonad morphism τ
between JS C P , ↓, o,⊕Kdc and JS ′ C P ′, ↓′, o′,⊕′Kdc

defines a directed container morphism pτqdc = (t C q)
between (S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′)

t : S → S ′

t s = fst (τ {P s} (s, id))
q : Π{s : S}.P ′ (t s)→ P s
q {s} = snd (τ {P s} (s, id))

pτqdc satisfies,

pJhKdcqdc = h

pτqdc = pτ ′qdc implies τ = τ ′

J−Kdc is a fully faithful functor

Interpretation is fully faithful

A
((((

((((
((((

natural transformation/comonad morphism τ
between JS C P , ↓, o,⊕Kdc and JS ′ C P ′, ↓′, o′,⊕′Kdc

defines a directed container morphism pτqdc = (t C q)
between (S C P , ↓, o,⊕) and (S ′ C P ′, ↓′, o′,⊕′)

t : S → S ′

t s = fst (τ {P s} (s, id))
q : Π{s : S}.P ′ (t s)→ P s
q {s} = snd (τ {P s} (s, id))

pτqdc satisfies,

pJhKdcqdc = h

pτqdc = pτ ′qdc implies τ = τ ′

J−Kdc is a fully faithful functor

Containers ∩ comonads = directed containers

Any comonad (D, ε, δ), such that D = JS C PKc,
determines a directed container

d(D, ε, δ), S C Pe = (S C P , ↓, o,⊕)

where
s ↓ p = snd (tδ s) p

o {s} = qε{s} ∗
p ⊕ {s} p′ = qδ {s} (p, p′)

using the container morphisms

tε C qε : S C P → Idc

tε C qε = pe ◦ εqc

tδ C qδ : S C P → (S C P) ·c (S C P)
tδ C qδ = pm {S C P} {S C P} ◦ δqc

It is forced that
∀{s}. tε s = ∗ and ∀{s}. fst (tδ s) = s

Containers ∩ comonads = directed containers ctd.
For any comonad (D, ε, δ), such that D = JS C PKc,

Jd(D, ε, δ),S C PeKdc = (D, ε, δ)

For any directed container (S C P , ↓, o,⊕),

dJS C P, ↓, o,⊕Kdc,S C Pe = (S C P, ↓, o,⊕)

The following is a pullback in CAT:

DCont U //

J−Kdc f.f.

��

Cont

J−Kc f.f.

��
Cmnd(Set) U // [Set,Set]

Constructions

Coproduct of directed containers

Cofree directed containers

Focussing of a container

Strict directed containers

Composition of a strict and non-strict directed container

Product of strict directed containers

Distributive laws between directed containers

Conclusion

Directed containers are a natural notion—cover a natural
class of examples and admit an elegant theory

They give a characterization of containers whose
interpretation carries a comonad structure

Questions?

Extra material

Coproduct of directed containers

Given directed containers E0 = (S0 C P0, ↓0, o0,⊕0),
E1 = (S1 C P1, ↓1, o1,⊕1), their coproduct is

E = E0 + E1 given as (S C P , ↓, o,⊕) where

S = S0 + S1

P (inl s) = P0 s
P (inr s) = P1 s

inl s ↓ p = inl (s ↓0 p)
inr s ↓ p = inr (s ↓1 p)

o {inl s} = o0 {s}
o {inr s} = o1 {s}

p ⊕ {inl s} p′ = p ⊕0 {s} p′
p ⊕ {inr s} p′ = p ⊕1 {s} p′

JE0 + E1Kdc ∼= JE0Kdc + JE1Kdc

The cofree directed container
Given a container C = (S0 C P0), the cofree directed
container on it is E = (S C P , ↓, o,⊕) where

S = νZ .Σs : S0.P0 s → Z ,
P = µZ . λ(s, v). 1 + Σp : P0 s.Z (v p),
o {s, v} = inl ∗,
(s, v) ↓ inl ∗ = (s, v),
(s, v) ↓ inr (p, p′) = v p ↓ p′,
inl ∗ ⊕ {s, v} p′′ = p′′,
inr (p, p′) ⊕ {s, v} p′′ = inr (p, p′ ⊕ {v p} p′′).

D X = νZ .X × JCKc Z
is the carrier of the cofree comonad on the functor JCKc

Instead of ν, one could also use µ in S , to get the directed
container representation of the cofree recursive comonad.

Focussing a container

Given a container C0 = (S0 C P0), we can focus it by

defining a directed container E = (S C P , ↓, o,⊕) where

S = Σs : S0.P0 s

P (s, p) = P0 s

o {s, p} = p

(s, p) ↓ p′ = (s, p′)

p′ ⊕ {s, p} p′′ = p′′

Focussed container interprets into the canonical comonad
structure on ∂JCKc × Id where ∂F denotes the derivative
of F

Directed container from a monoid

Any monoid (M , e, •) gives a directed container

E = (S C P , ↓, o,⊕) by

S = 1

P ∗ = M

∗ ↓ p = ∗

o{∗} = e

p ⊕ {∗}p′ = p • p′

JEKdc X = Σs : ∗.M → X ∼= M → X

Containers ∩ Monads = ?

Given a container C = (S C P)

The structure (η, µ) of a monad on JS C PKc could be
represented as

e : S (for the shape map for η)

• : Πs : S .(P s → S)→ S (for the shape map for µ)

0 : Π{s : S}.Πv : P s → S .P (s • v)→ P s
(for the position map for µ)

1 : Π{s : S}.Πv : P s → S .
Πp : P (s • v).P (v (v 0 {s}p))

(for the position map for µ)

