
Refinement Types and Algebraic Effects
Danel Ahman

LFCS, School of Informatics, University of Edinburgh

1. Introduction
In software development, programs and software components are of-
ten intended to behave according to some pre-given specifications,
usually created at the analysis stage. However, widespread program-
ming languages and their type systems are generally too weak to en-
code and enforce such specifications. To address this issue, various
approaches have been developed to extend standard type systems
to support different forms of specifications, some examples being
session types, refinement types, contracts, ownership types, Hoare
Type Theory and dependent types. All of these systems give at least
one important guarantee: whenever programs are well-formed and
well-typed, they adhere to the encoded specifications. This guaran-
tee is either enforced at compile time during type-checking or by a
suitable run-time environment. These methods behave well for their
specialist problem domains, e.g.: session types for specifying net-
work communication behavior and Hoare Type Theory for speci-
fying pre- and post-conditions on state manipulations. However, as
each of these methods usually only accounts for a very particular
set of specifications and notions of computation, extending the un-
derlying programming language with new features also requires the
method under question to be modified and its properties re-proved.

To remedy the above deficiencies, we propose to study a more
general framework that could account for a wide range of different
notions of computation and logical specification. Our proposal is to
take refinement types as a basis and combine them with Levy’s Call-
by-Push-Value (CBPV) [4] paradigm to account for both properties
on values that programs manipulate and for properties on the effect-
ful behavior that the programs are intended to exhibit. To accom-
modate different notions of computation, such as state, exceptions,
input/output and probabilistic computations, we propose to build our
work on the algebraic treatment of computational effects of Plotkin
and Power [6].

Due to lack of space we only give a very brief overview of our
preliminary work. More details can be found in the author’s PhD
thesis proposal1.

Acknowledgments
I am very grateful to my PhD supervisors Gordon Plotkin and Alex
Simpson for helpful discussions. I also thank Sam Lindley and Ben
Kavanagh for useful discussions.

2. A refinement type system for CBPV
Our refinement type system is inspired by the theoretical treatment
given by Denney [1]. In particular, we follow Denney’s lead in
using indexed kinds to track the underlying refinement-free CBPV
types. As we base our work on CBPV, we can exploit its separation
between values and computations and define well-formed value and
computation refinement types in Figure 1 by using two judgments:
` σ : Ref(A) and ` τ : Ref(C). The kind indices A and C are the
underlying CBPV value and computation types. Most of the rules
are standard from CBPV, modulo the indexed kinds. The important
rules are the last two which introduce logical specifications into the
type system. These specifications ϕ are defined as formulas in the
logic of algebraic effects introduced by Plotkin and Pretnar [7].

The reader should note that here we present a type system in
which refinement types do not depend on the free variables as
opposed to the context-dependent refinement types appearing in
Denney’s work and also, for example, in the F* project [8]. This
choice was made to start with a simpler semantic analysis. We later
intend to extend the type system with additional context dependence.

We accompany our definitions with an operation d−e on types
and terms that forgets the extra structure of the refinement type
system and returns the underlying CBPV types and terms, e.g.:
d` σ : Ref(A)e def

= A. As we will overload notation and use the
CBPV term constructor names also in our type system, d−e acts

1 Author’s PhD thesis proposal:
http://homepages.inf.ed.ac.uk/s1225336/papers/thesisproposal.pdf

` α : Ref(α) ` 1 : Ref(1) ` 0 : Ref(0)

` τ : Ref(C)

` Uτ : Ref(UC)

` σ : Ref(A)

` Fσ : Ref(FA)

` σi : Ref(Ai) (i ∈ {1, 2})

` σ1 + σ2 : Ref(A1 + A2)

` τ i : Ref(Ci) (i ∈ {1, 2})

` τ1 × τ2 : Ref(C1 × C2)

` σ1 : Ref(A1) ` σ2 : Ref(A2)

` σ1 × σ2 : Ref(A1 × A2)

` σ : Ref(A) ` τ : Ref(C)

` σ → τ : Ref(A→ C)

` σ : Ref(A) x : A ` ϕ : prop

` {x : σ | ϕ} : Ref(A)

` τ : Ref(C) ζ : C ` ϕ : prop

` {ζ : τ | ϕ} : Ref(C)

Figure 1. Well-formed value and computation refinement types

on term constructors by identity, e.g.: dproji V e
def
= proji dV e. In

addition, we also define an operation (−)• that translates refine-
ment types σ, τ to corresponding propositions x : dσe ` σ• and
ζ : dτe ` τ• in the logic of algebraic effects. The definition of (−)•

is given by mutual structural recursion on both value and computa-
tion refinement types. Due to space constraints we only illustrate the
definition for ` {x : σ | ϕ} : Ref(A) and ` Fσ : Ref(FA):

({x′ : σ | ϕ})• def
= ϕ[x/x′] ∧ σ•

(Fσ)•
def
=

(
µX.((ζ : dFσe).(∃x : dσe.ζ ≡ return x∧

σ•(x)) ∨ (〈−〉(X)(ζ)))
)
(ζ)

Intuitively, the proposition ζ : dFσe ` (Fσ)• is satisfied by those
computations whose return values satisfy x : dσe ` σ•.

The terms of our language are divided into values and computa-
tions, similarly to CBPV. The well-typed terms are mutually defined
in Figure 2 and given by judgments Γ v̀ V : σ and Γ c̀ M : τ .
The first six rules define the introduction and elimination principles
for the refinements {x : σ | ϕ} and {ζ : τ | ϕ}. The rules on the
second and third rows present the variables and terms of value unit
type, value product type, and value coproduct type. In addition we
also have term constructors f corresponding to the function symbols
in the base signature of the effect theories of Plotkin and Pretnar [7].
In the case of a natural numbers base type nat, fs could be addition,
multiplication, etc. The third row presents the thunking and forcing
constructs that turn computations into values and vice versa. The
fourth row describes terms of computation product type, the free
computation type and function type.

The last two rows present typing rules for the monadic sequenc-
ing and algebraic effect operations. While most of the previous rules
are familiar from CBPV, these rules are a little bit different. Recall
that in CBPV, the operations op : β;α are typed with the following
rule:

Γ v̀ V : β Γ, x : α c̀ M : C

Γ c̀ opV ((x : α).M) : C

However, in the presence of refinement types, this rule will in gen-
eral not be sound. The intuitive cause of unsoundness is that the
refinement type σ at which we are typing opV ((x : α).M) might,
for example, assert that the specific op is not allowed to inhabit σ.
Moreover, as semantically operations on product models are defined
component-wise, operations at product refinement types will only be
well-typed if they are well-typed at both components. Similar also
holds for typing operations at function type. The monadic sequenc-
ing M tox.N has to also be typed in this type-directed manner.

Finally, it is also straightforward to define refinement relations
for both value and computation refinement types: Γ r̀ σ2 v σ1 and
Γ r̀ τ2 v τ1. Based on these refinement relations, we can also
define weakening principles for values and computations:

Γ v̀ V : σ2 Γ r̀ σ2 v σ1

Γ v̀ V : σ1

Γ c̀ M : τ2 Γ r̀ τ2 v τ1

Γ c̀ M : τ1

3. Semantics
We sketch a concrete categorical semantics for our refinement type
system using the subobject fibration Sub(Set) → Set. We intend

Γ v̀ V : σ dΓe | Γ
• ` ϕ[dV e/x]

Γ v̀ V : {x : σ | ϕ}

Γ v̀ V : {x : σ | ϕ}

Γ v̀ V : σ

Γ v̀ V : {x : σ | ϕ}

dΓe | Γ
• ` ϕ[dV e/x]

Γ c̀ M : τ dΓe | Γ
• ` ϕ[dMe/x]

Γ c̀ M : {ζ : τ | ϕ}

Γ c̀ M : {ζ : τ | ϕ}

Γ c̀ M : τ

Γ c̀ M : {ζ : τ | ϕ}

dΓe | Γ
• ` ϕ[dMe/ζ]

` Γ, x : σ,Γ
′ wf

Γ, x : σ,Γ
′

v̀ x : σ

` Γ wf

Γ v̀ ? : 1

Γ v̀ V1 : β1 ... Γ v̀ Vn : βn

Γ v̀ f(V1, ..., Vn) : β

Γ v̀ V : σ1 Γ v̀ W : σ2

Γ v̀ 〈V,W 〉 : σ1 × σ2

Γ v̀ V : σ1 × σ2

Γ v̀ proji V : σi

Γ v̀ V : σi

Γ v̀ inji V : σ1 + σ2

Γ v̀ V : 0

Γ v̀ pmatchV as {} : σ

Γ v̀ V : σ1 + σ2 Γ, xi : σi, y : {x : 1 | dV e ≡ inji xi} v̀ Wi : σ

Γ v̀ pmatchV as {inj1 (x1) 7→ W1, inj2 (x2) 7→ W2} : σ

Γ c̀ M : τ

Γ v̀ thunkM : Uτ

Γ v̀ V : Uτ

Γ c̀ forceV : τ

Γ c̀ M1 : τ1 Γ c̀ M2 : τ2

Γ c̀ 〈M1,M2〉 : τ1 × τ2

Γ c̀ M : τ1 × τ2

Γ c̀ projiM : τ i

Γ v̀ V : σ

Γ c̀ returnV : Fσ

Γ c̀ M : σ → τ Γ v̀ V : σ

Γ c̀ MV : τ

Γ, x : σ c̀ M : τ

Γ c̀ λx : σ.M : σ → τ

Γ c̀ M : Fσ1 Γ, x : σ1 c̀ N : Fσ2

Γ c̀ M to x.N : Fσ2

Γ c̀ M to x. (fstN) : τ1 Γ c̀ M to x. (sndN) : τ2

Γ c̀ M to x.N : τ1 × τ2

Γ, y : σ c̀ M to x. (Ny) : τ

Γ c̀ M to x.N : σ → τ

Γ v̀ V : β Γ, x : α c̀ M : Fσ

Γ c̀ opV ((x : α).M) : Fσ

Γ c̀ opV ((x : α).(fstM)) : τ1 Γ c̀ opV ((x : α).(sndM)) : τ2

Γ c̀ opV ((x : α).M) : τ1 × τ2

Γ, y : σ c̀ opV ((x : α).(My)) : τ

Γ c̀ opV ((x : α).M) : σ → τ

Figure 2. Well-typed value and computation terms

to investigate more general and abstract classes of models for our
refinement type system in the near future. We decided to use a sub-
object fibration because it allows us to model the intuitive reading
of refinement types. Namely, refinement types, as they are defined
above, should be semantically understood as pairs of an underlying
type and a predicate over it, i.e., as a pair of a set and its subset.

More specifically, we build our semantics on top of the standard
semantics for CBPV and the logic of algebraic effects in Set. To
remind the reader, a CBPV model is usually given by an adjunction
F a U between Set and a category of algebras over Set. CBPV
value types are interpreted as objects JAK in Set and computation
types as algebras JCK. Value terms are interpreted as morphisms
JΓ v̀ V : AK : JΓK→ JAK and computation terms are interpreted
as morphisms JΓ c̀ M : CK : JΓK→ UJCK. Plotkin and Pretnar
give the logic of algebraic effects a standard Set-based seman-
tics: propositions Γ; ∆; Π ` ϕ : prop are interpreted as subsets
JϕK ⊆ JΓK×J∆K×JΠK and predicates Γ; ∆; Π ` π : (~A, ~C)→ prop

are interpreted as maps JπK : JΓK×J∆K×JΠK→ P(J ~AK×UJ~CK).
For our purposes, we consider this semantics in a more general
fibred setting.

We interpret value and computation refinement types as objects
in Sub(Set): J` σ : Ref(A)K def

= JσK� JAK and
J` τ : Ref(C)K def

= JτK� UJCK, i.e., as subobjects of JAK and
UJCK. Value and computation terms are interpreted as morphisms
in Sub(Set). In particular, a morphism between JΓK� JdΓeK and
JσK� JAK is given by a Set morphism between JdΓeK and JAK
together with a necessarily unique Set morphism between JΓK and
JσK commuting with the subobjects. This definition of a morphism
again follows the intuitive reading of refinement types: the underly-
ing morphism between JdΓeK and JAK denotes a CBPV value term
whilst the existence of a morphism between JΓK and JσK ensures
that the term obeys its refinements. Computation terms are inter-
preted similarly. A more thorough, diagrammatical, explanation of
this subobject fibration based semantics can be again found in au-
thor’s PhD thesis proposal.

Finally, it is important to notice that our semantics for refinement
types differs from the semantics considered by Jacobs [3]. In partic-
ular, while he interprets a refinement type directly as a subset, using
the notion of comprehension, we interpret it as a pair of an under-
lying set and a subset. However, we expect that Jacobs’s work will
provide us with inspiration for developing more general classes of
models for our refinement type system.

4. Example specifications
We conclude by briefly discussing how one might account for both
Hoare Type Theory [5] style pre- and post-condition specifications
and session type [2] style network communication specifications.
We also briefly discuss how our approach allows one to combine
different kinds of specifications and different notions of computa-
tion.

4.1 Hoare Type Theory style pre- and post-conditions
We start with the theory of global state given by the operations
lookup, update and equations as proposed by Plotkin and Power [6].
We can express the Hoare type {P}x : A{Q} as a computation re-
finement type ` {ζ : FA | P Ix:A Q} : Ref(FA) with the propo-

sition P Ix:A Q defined as:

ζ : FA ` P Ix:A Q
def
=

∀xl1
: int, ..., xln : int, yl1 : int, ..., yln : int, z : A .

PI[xl1
/x1, ..., xln/xn]∧

∃ζ′ : F1 . updatel1,xl1
(... (updateln,xln

(ζ))) ≡
ζ′ to x. updatel1,yl1

(... (updateln,yln
(return z)))

=⇒ QI[yl1/x1, ..., yln/xn, z/x]

This refinement type makes the partial correctness argument ex-
plicit. Whenever a program, when started in a state satisfying P ,
terminates in some state, then that final state together with the re-
turn value of type A has to satisfy Q.

4.2 Session types style network communication specifications
We start with the theory of input/output given by the operations
receive, send with no equations. By taking inspiration from session
types, we can consider the following simple grammar for session
refinements, i.e., specifications on how processes should send and
receive bits, i.e.: Si ::= endi | !bit.Si | ?bit.Si. Notice, that we
equip the process types with session specifications rather than the
channel types. More formally, we define endi as a predicate in the
logic of algebraic effects and !bit.(−), ?bit.(−) as operations on
predicates. Then, a process Γ c̀ M : {ζ : F1 | Si(ζ)} uses channel
i exactly as specified by Si.

4.3 Combining different specifications
Although we do not show it explicitly here, we can combine both
kinds of specifications by combining the theories of state and in-
put/output. By using this composite theory, we can define compu-
tation refinement types which both specify how a process should
communicate over the network and also how a process should ma-
nipulate the state. Moreover, we can extend this analysis with other
algebraic effects as well, e.g., exceptions, non-determinism, proba-
bilistic computations, etc.

5. Conclusion
We only present very preliminary results. There is still a long way to
go for a satisfactory theory. For example, we do not account for local
state and we have not integrated the explicit linearity of network
communication found in the session type literature.

References
[1] E. Denney. A Theory of Program Refinement. PhD thesis, University of Edinburgh,

1998.

[2] K. Honda. Types for dyadic interaction. In Proc. CONCUR’93, pages 509–523,
1993.

[3] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.

[4] P. B. Levy. Call-by-Push-Value. A Functional/Imperative Synthesis. Springer, 2004.

[5] A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism
and separation. J. Funct. Program., 18(5-6):865–911, 2008.

[6] G. D. Plotkin and J. Power. Notions of computation determine monads. In
Proc. FOSSACS’02, pages 342–356, 2002.

[7] M. Pretnar. The logic and handling of algebraic effects. PhD thesis, University of
Edinburgh, 2010.

[8] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure
distributed programming with value-dependent types. In Proc. ICFP’11, pages
266–278, 2011.

