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Containers [1] are an elegant representation of a wide class of datatypes in
terms of shapes and positions in shapes. In our FoSSaCS 2012 work [2], we
introduced directed containers as a special case to account for the common sit-
uation where every position in a shape determines another shape, informally
the subshape rooted by that position; some examples being the datatypes of
nonempty lists and trees and the corresponding zipper datatypes. While con-
tainers interpret into set functors via a fully faithful monoidal functor, directed
containers interpret into comonads. Further, it is also true that every comonad
whose underlying functor is a container is represented by a directed container.
In this paper, we develop a characterization of distributive laws between such
comonads.

A container S C P is given by a set S (of shapes) and a shape-indexed
family P : S → Set (of positions). A morphism between containers S C P and
S′ C P ′ is a pair t C q of maps t : S → S′ and q : Π{s : S}. P ′ (t s) → P s.
(We use Agda’s syntax of braces for implicit arguments.) Containers form a
category Cont carrying a monoidal structure defined by Idc = 1 C λ ∗ . 1 and
(S0 C P0) ·c (S1 C P1) = Σs : S0. P0 s → S1 C λ (s, v). Σp0 : P0 s. P1 (v p0)
together suitable unital and associativity laws.

The interpretation of a container S C P is the set functor given by
JSCP KcX = Σs : S. P s→ X, JSCP Kc f (s, v) = (s, f ◦v). The interpretation of
a container map tCq is the natural transformation JtCqKc(s, v) = (t s, v ◦q {s}).
J−Kc is a fully faithful monoidal functor from Cont to [Set,Set].

A directed container is a container S C P together with three operations

– ↓ : Πs : S. P s→ S (the subshape for a position),
– o : Π{s : S}. P s (the root),
– ⊕ : Π{s : S}. Πp : P s. P (s ↓ p) → P s (translation of subshape positions

into positions in the global shape),

satisfying the following two shape equations and three position equations:

1. ∀{s}. s ↓ o = s,
2. ∀{s, p, p′}. s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′,



3. ∀{s, p}. p ⊕ {s} o = p,
4. ∀{s, p}. o{s} ⊕ p = p,
5. ∀{s, p, p′, p′′}. (p ⊕ {s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′).

Notice that, modulo the fact that the positions involved come from different sets,
equations 3-5 are the equations of a monoid. Equations 1-2 make sure that equa-
tions 4-5 are well-typed. A morphism between directed containers (S C P , ↓, o,⊕)
and (S′ C P ′, ↓′, o′,⊕′) is a morphism t C q between the containers S C P and
S′ C P ′ that satisfies these equations:

1. ∀{s, p}. t (s ↓ q p) = t s ↓′ p,
2. ∀{s}. o {s} = q (o′ {t s}),
3. ∀{s, p, p′}. q p ⊕ {s} q p′ = q (p ⊕′ {t s} p′).

Here, equations 2-3 are reminiscent of the equations of a monoid morphism.
Directed containers form a category DCont.

The interpretation JSCP, ↓, o,⊕Kdc of a directed container is the set functor
JSCP Kc together with natural transformations ε, δ where ε (s, v) = v (o {s}) and
δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕ {s} p′))), making a comonad. The interpreta-
tion Jt C qKdc of a directed container morphism is Jt C qKc, which is a comonad
morphism. J−Kdc is a fully-faithful functor DCont → Comonads(Set). More-
over, every comonad whose underlying functor is a container is represented by
a directed container. Actually, DCont is isomorphic to Comonoids(Cont)),
and that in turn is easily seen to be the pullback of U : Comonads(Set) →
[Set,Set] along J−Kc : Cont→ [Set,Set].

A sufficient condition for the composition of the underlying functors of two
comonads to carry a comonad structure is that they distribute over each other.
We develop the corresponding concept for directed containers and show that it
is adequate.

For two directed containers (S0 CP0, ↓0, o0,⊕0) and (S1 CP1, ↓1, o1,⊕1), we
define a distributive law to be given by operations

– t1 : Πs : S0. Πv : P0 s→ S1. P1 (v (o0 {s}))→ S0,
– q0 : Π{s : S0}. Π{v : P0 s→ S1}. Πp1 : P1 (v (o0 {s})).

P0 (t1 s v p1))→ P0 s,
– q1 : Π{s : S0}. Π{v : P0 s→ S1}. Πp1 : P1 (v (o0 {s})).

Πp0 : P0 (t1 s v p1). P1 (v (q0 {s} {v} p1 p0))

satisfying the equations

1. ∀{s, v, p1, p0}. t1 s v p1 ↓0 p0
= t1 (s ↓0 q0 p1 p0) (λp′0. v (q0 p1 p0 ⊕0 p

′
0)) (q1 p1 p0),

2. ∀{s, v}. t1 s v o1 = s,
3. ∀{s, v, p1, p′1}. t1 s v (p1 ⊕1 p

′
1) = t1 (t1 s v p1) (λp0. v (q0 p1 p0) ↓1 q1 p1 p0) p′1,

4. ∀{s, v, p1}. q0 {s} {v} p1 o0 = o0 ,
5. ∀{s, v, p1, p0, p′0}. q0 {s} {v} p1 (p0 ⊕0 p

′
0) = q0 p1 p0 ⊕0 q0 (q1 p1 p0) p′0,

6. ∀{s, v, p0}. q0 {s} {v} o1 p0 = p0,
7. ∀{s, v, p1, p′1, p0}. q0 {s} {v} (p1 ⊕1 p

′
1) p0 = q0 p1 (q0 p

′
1 p0),



8. ∀{s, v, p1}. q1 {s} {v} p1 o0 = p1,
9. ∀{s, v, p1, p0, p′0}. q1 {s} {v} p1 (p0 ⊕0 p

′
0) = q1 (q1 p1 p0) p′0,

10. ∀{s, v, p0}. q1 {s} {v} o1 p0 = o1,
11. ∀{s, v, p1, p′1, p0}. q1 {s} {v} (p1 ⊕1 p

′
1) p0 = q1 p1 (q0 p

′
1 p0) ⊕1 q1 p

′
1 p0.

If we ignore that both P0 and P1 are families rather than sets (i.e., confine
ourselves to the special case S0 = S1 = 1), the equations 4-11 are the equations
required of two monoids to have a knit or Zappa-Szép product (see [3, Lemma
3.13 (xv)]).

A distributive law as above determines a container morphism t C q :
(S0 C P0) ·c (S1 C P1) → (S1 C P1) ·c (S0 C P0) by t (s, v) = (v (o0 {s}), t1 s v)
and q {s, v} (p1, p0) = (q0 {s} {v} p1 p0, q1 {s} {v} p1 p0). The interpreting nat-
ural transformation Jt C qKc gives a distributive law θ between the comonads
JS0 C P0, ↓0, o0,⊕0Kdc and JS1 C P1, ↓1, o1,⊕1Kdc by θ (s, v) = (π0 (v (o0 {s})),
λp1. (t1 s (π0◦v) p1, λp0. π1 (v (q0 (p1, p0))) (q1 (p1, p0)))). And conversely, any dis-
tributive law between these two comonads corresponds to a distributive law
between the two directed containers. The fact that the composition of two di-
rected containers distributing over each other is a directed container follows from
the properties of J−Kdc (“via the semantics”), but is also easily proved directly
(“syntactically”).

We see that, just as comonads whose underlying functor is the interpreta-
tion of a container have some special properties (the outer shape of the nested
datastructure returned by the comultiplication is the shape of the given datas-
tructure), so do distributive laws between such comonads have some similar
properties (the outer shape of the nested datastructure returned by the dis-
tributive law is the inner shape at the outer root position of the given nested
datastructure).

In the paper, we present and analyze several generic distributive laws of
comonads (e.g., distributivity of any comonad over the product comonad, dis-
tributive laws for cofree comonads) in this form as well as some that are specific
to comonads whose underlying functors are containers.

Acknowledgements This research was supported by the Estonian Ministry of
Education and Research target-financed research theme no. 0140007s12, the Es-
tonian Science Foundation grant no. 9475 and the Estonian Centre of Excellence
in Computer Science, EXCS, an European Regional Development Fund funded
project.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

2. Ahman, D., Chapman, J., Uustalu, T.: When is a container a comonad? In:
Birkedal, L. (ed.) FoSSaCS 2012, Lect. Notes in Comput. Sci., vol. 7213, pp. 74–88.
Springer (2012)

3. Brin, M. G.: On the Zappa-Szép product. Commun. in Algebra 33(2) 393–424,
(2005)


